Phase Evolution and Crystallization Mechanism of Glass Ceramic Solid-State Electrolyte from In Situ Synchrotron X-ray Diffraction

[1]  Hanshuo Liu,et al.  Progress and Perspectives of Lithium Aluminum Germanium Phosphate‐Based Solid Electrolytes for Lithium Batteries , 2023, Advanced Functional Materials.

[2]  G. Cui,et al.  Designing All-Solid-State Batteries by Theoretical Computation: A Review , 2023, Electrochemical Energy Reviews.

[3]  A. Rodrigues,et al.  Flash sintering with concurrent crystallization of Li1.5Al0.5Ge1.5(PO4)3 glass , 2022, Acta Materialia.

[4]  T. Haishi,et al.  Ceramic-glass pellet thickness and Li diffusion in NASICON-type LAGP (Li1.5Al0.5Ge1.5(PO4)3) studied by pulsed field gradient NMR spectroscopy , 2022, Solid State Ionics.

[5]  C. Benmore,et al.  Structure of crystalline and amorphous materials in the NASICON system Na1+xAlxGe2-x(PO4)3. , 2021, The Journal of chemical physics.

[6]  Jong‐Won Lee,et al.  Improving the ionic conductivity of Li1+Al Ge2-(PO4)3 solid electrolyte for all-solid-state batteries using microstructural modifiers , 2020 .

[7]  D. Urban,et al.  Atomistic analysis of Li migration in Li1+AlTi2−(PO4)3 (LATP) solid electrolytes , 2020, 2009.00954.

[8]  H. Eckert,et al.  Structure and lithium‐ion mobility in Li 1.5 M 0.5 Ge 1.5 (PO 4 ) 3 (M = Ga, Sc, Y) NASICON glass‐ceramics , 2020 .

[9]  T. Ko,et al.  A systematic study of annealing environment and Al dopant effect on NASICON-type LiZr2(PO4)3 solid electrolyte , 2020, Ionics.

[10]  Q. Shen,et al.  Effect of bottleneck size on lithium migration in lithium garnets Li7La3Zr2O12 (LLZO) , 2020, Ionics.

[11]  Adriana M. Nieto-Muñoz,et al.  The role of Al+3 on the microstructural and electrical properties of Na1+Al Ti2-(PO4)3 NASICON glass-ceramics , 2020 .

[12]  H. Eckert,et al.  Isothermal evolution of phase composition, structural parameters, and ionic conductivity in Na1+Al Ge2-(PO4)3 glass-ceramics , 2020 .

[13]  Jincheng Du,et al.  Crystallization behavior of Li1+xAlxGe2-x(PO4)3 glass-ceramics: Effect of composition and thermal treatment , 2019 .

[14]  Jincheng Du,et al.  Lithium Ion Diffusion Mechanism and Associated Defect Behaviors in Crystalline Li1+xAlxGe2–x(PO4)3 Solid-State Electrolytes , 2019, The Journal of Physical Chemistry C.

[15]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[16]  D. Weber,et al.  Correlating Transport and Structural Properties in Li1+ xAl xGe2- x(PO4)3 (LAGP) Prepared from Aqueous Solution. , 2018, ACS applied materials & interfaces.

[17]  Ru‐Shi Liu,et al.  Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries , 2017 .

[18]  Li Lu,et al.  Computational and Experimental Investigation of the Electrochemical Stability and Li-Ion Conduction Mechanism of LiZr2(PO4)3 , 2017 .

[19]  Joeri Van Mierlo,et al.  Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030 , 2017 .

[20]  Yang Shen,et al.  Enhanced lithium-ion conductivity in a LiZr2(PO4)3 solid electrolyte by Al doping , 2017 .

[21]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[22]  K. Aly,et al.  Estimation of lattice strain for zirconia nano-particles based on Williamson- Hall analysis , 2017 .

[23]  Xi Chen,et al.  Mastering the interface for advanced all-solid-state lithium rechargeable batteries , 2016, Proceedings of the National Academy of Sciences.

[24]  John B Goodenough,et al.  An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na3 MnTi(PO4 )3. , 2016, Angewandte Chemie.

[25]  K. Arbi,et al.  Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations. , 2016, Journal of the American Chemical Society.

[26]  S. Ribeiro,et al.  Preparation, Structural Characterization, and Electrical Conductivity of Highly Ion-Conducting Glasses and Glass Ceramics in the System Li1+xAlxSnyGe2-(x+y)(PO4)3 , 2016 .

[27]  R. P. Rao,et al.  Structural evolution of NASICON-type Li1+xAlxGe2−x(PO4)3 using in situ synchrotron X-ray powder diffraction , 2016 .

[28]  Sai Bhavaraju,et al.  Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte , 2015 .

[29]  Li Lu,et al.  Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic , 2015 .

[30]  Da Deng,et al.  Li‐ion batteries: basics, progress, and challenges , 2015 .

[31]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[32]  E. Wachsman,et al.  Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12 , 2015, Ionics.

[33]  R. Jiménez,et al.  High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M=Ti, Ge and 0≤x≤0.5) , 2015 .

[34]  Peng Zhang,et al.  High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3 , 2015 .

[35]  R. Jiménez,et al.  On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2 - X(PO4)3 Nasicon type materials , 2015 .

[36]  J. Janek,et al.  Sol–gel synthesis and room-temperature properties of α-LiZr2(PO4)3 , 2015 .

[37]  A. Aghaei,et al.  Lithium ion-conducting glass-ceramics in the system Li2O–TiO2–P2O5–Cr2O3–SiO2 , 2015 .

[38]  Peng Zhang,et al.  Water-stable lithium ion conducting solid electrolyte of iron and aluminum doped NASICON-type LiTi2(PO4)3 , 2014 .

[39]  G. F. Ortiz,et al.  Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping , 2014 .

[40]  C. Stoldt,et al.  Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes , 2014 .

[41]  Zhuobin Li,et al.  Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries , 2014, Front. Energy Res..

[42]  H. Eckert,et al.  Glass-to-Crystal Transition in Li1+xAlxGe2–x(PO4)3: Structural Aspects Studied by Solid State NMR , 2014 .

[43]  N. Karpukhina,et al.  Crystallisation in oxide glasses - a tutorial review. , 2014, Chemical Society reviews.

[44]  Yutao Li,et al.  High Li+ conduction in NASICON-type Li1+xYxZr2−x(PO4)3 at room temperature , 2013 .

[45]  M. Hoelzel,et al.  Structural factors that enhance lithium mobility in fast-ion Li(1+x)Ti(2-x)Al(x)(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K. , 2013, Inorganic chemistry.

[46]  J. L. Narváez-Semanate,et al.  Determination of crystallization kinetics parameters of a Li1.5Al0.5Ge1.5(PO4)3 (LAGP) glass by differential scanning calorimetry , 2013 .

[47]  Jung-Ki Park Principles and Applications of Lithium Secondary Batteries: PARK:LI BATTERIES O-BK , 2012 .

[48]  J. Sasaki,et al.  Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening , 2012 .

[49]  G. Kaptay The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials. , 2012, Journal of nanoscience and nanotechnology.

[50]  Yutao Li,et al.  NASICON-type Li1+2xZr2−xCax(PO4)3 with high ionic conductivity at room temperature , 2011 .

[51]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[52]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[53]  F. Rosciano,et al.  Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics , 2011 .

[54]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[55]  Joykumar S. Thokchom,et al.  The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic , 2010 .

[56]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[57]  A. Rodrigues,et al.  Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass-ceramic , 2009 .

[58]  N. Gupta,et al.  Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic , 2008 .

[59]  Binod Kumar,et al.  Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic , 2008 .

[60]  Edgar Dutra Zanotto,et al.  On the sinterability of crystallizing glass powders , 2008 .

[61]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[62]  Z. Wen,et al.  Lithium Ion‐Conducting Glass–Ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with Good Electrical and Electrochemical Properties , 2007 .

[63]  K. Arbi,et al.  Lithium exchange processes in the conduction network of the Nasicon LiTi2-xZrx(PO4)3 Series (0 < or = x < or = 2). , 2006, The journal of physical chemistry. B.

[64]  M. Perez Gibbs-Thomson effects in phase transformations , 2005 .

[65]  B. Roling,et al.  Lithium and potassium ion conduction in A3TiB′P3O12 (A=Li, K; B′=Zn, Cd) NASICON-type glasses , 2005 .

[66]  Jie Fu Fast Li+ Ion Conduction in Li2O‐Al2O3‐TiO2‐SiO2‐P2O2 Glass‐Ceramics , 2005 .

[67]  Y. Taufiq-Yap,et al.  New Lithiated NASICON-Type Li2Ni2 ( MoO4 ) 3 for Rechargeable Lithium Batteries Synthesis, Structural, and Electrochemical Properties , 2004 .

[68]  Edgar Dutra Zanotto,et al.  Isothermal sintering with concurrent crystallization of polydispersed soda–lime–silica glass beads , 2003 .

[69]  J. Pelleg,et al.  Stress changes in chemical vapor deposition tungsten silicide (polycide) film measured by x-ray diffraction , 2002 .

[70]  M. Qian The gibbs-thomson effect in dilute binary systems , 2002 .

[71]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[72]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[73]  P. Fabry,et al.  Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV (PO4)3 with AIV=Ti or Ge and 0≤x≤0·7 for use as Li+ sensitive membranes , 1999 .

[74]  Carlos Pecharromán,et al.  Relationship between Activation Energy and Bottleneck Size for Li+ Ion Conduction in NASICON Materials of Composition LiMM‘(PO4)3; M, M‘ = Ge, Ti, Sn, Hf , 1998 .

[75]  M. Tabuchi,et al.  Ionic conductivity enhancement in LiGe2(PO4)3 solid electrolyte , 1997 .

[76]  J. Málek The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses☆ , 1995 .

[77]  P. Hagenmuller,et al.  Structure and thermal expansion of LiGe2(PO4)3 , 1991 .

[78]  S. Sakka,et al.  Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot , 1980 .

[79]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[80]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[81]  N. Uvarov,et al.  Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte , 2017 .

[82]  Jie Fu Photocatalytic activity of glass ceramics containing Nasicon-type crystals , 2013 .

[83]  D. Nikolic,et al.  Preparation of glass-ceramic in Li2O-Al2O3-GeO2-P2O5 system , 2013 .

[84]  I. Chan,et al.  On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems , 2009 .

[85]  A. Clearfield,et al.  Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf) , 1986 .