Transform coding with backward adaptive updates

The Karhunen-Loeve transform (KLT) is optimal for transform coding of a Gaussian source. This is established for all scale-invariant quantizers, generalizing previous results. A backward adaptive technique for combating the data dependence of the KLT is proposed and analyzed. When the adapted transform converges to a KLT, the scheme is universal among transform coders. A variety of convergence results are proven.

[1]  Jacob Ziv,et al.  On universal quantization , 1985, IEEE Trans. Inf. Theory.

[2]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[3]  Michael T. Orchard,et al.  Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework , 1997, Proceedings DCC '97. Data Compression Conference.

[4]  Vivek K Goyal Quantized Overcomplete Expansions : Analysis , Synthesis and Algorithms , 1995 .

[5]  Allen Gersho,et al.  Advances in speech and audio compression , 1994, Proc. IEEE.

[6]  R. Gray,et al.  Dithered Quantizers , 1993, Proceedings. 1991 IEEE International Symposium on Information Theory.

[7]  John Vanderkooy,et al.  Quantization and Dither: A Theoretical Survey , 1992 .

[8]  ROGER C. WOOD,et al.  On optimum quantization , 1969, IEEE Trans. Inf. Theory.

[9]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[10]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[11]  M. Effros,et al.  Weighted universal transform coding: universal image compression with the Karhunen-Loeve transform , 1995, Proceedings., International Conference on Image Processing.

[12]  Daniel W. E. Schobben,et al.  Dither and data compression , 1997, IEEE Trans. Signal Process..

[13]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[14]  Simon Haykin,et al.  Optimally adaptive transform coding , 1995, IEEE Trans. Image Process..

[15]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[16]  P. A. Payne,et al.  The exact impact of amplitude quantization on multi-dimensional, high-order moments estimation , 1994, Signal Process..

[17]  Vivek K. Goyal,et al.  Universal transform coding based on backward adaptation , 1997, Proceedings DCC '97. Data Compression Conference.

[18]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[19]  Max V. Mathews,et al.  A linear coding for transmitting a set of correlated signals , 1956, IRE Trans. Inf. Theory.

[20]  R. Crochiere,et al.  Speech Coding , 1979, IEEE Transactions on Communications.

[21]  J.D. Gibson,et al.  Adaptive prediction in speech differential encoding systems , 1980, Proceedings of the IEEE.

[22]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[23]  H. Piaggio Mathematical Analysis , 1955, Nature.

[24]  Zhen Zhang,et al.  An on-line universal lossy data compression algorithm via continuous codebook refinement - Part I: Basic results , 1996, IEEE Trans. Inf. Theory.

[25]  Antonio Ortega,et al.  Adaptive scalar quantization without side information , 1997, IEEE Trans. Image Process..

[26]  Herbert Gish,et al.  Asymptotically efficient quantizing , 1968, IEEE Trans. Inf. Theory.

[27]  P. Schultheiss,et al.  Block Quantization of Correlated Gaussian Random Variables , 1963 .