Dimensionality reduction for heterogeneous dataset in rushes editing

Rushes editing enables the computer to edit the film like a professional film cutter based on the raw footage. The most important issue in rushes editing is the generation of the effective, efficient, and robust descriptors for footage content analysis. Dimensionality reduction technology provides the means to generate such descriptors by seeking a low-dimensional equivalence of the high-dimensional video data using intelligent algorithms. However, existing dimensionality reduction techniques are not directly applicable to the editing of rushes because of the heterogeneity of rushes data. To deal with this heterogeneity, this paper proposes a novel non-linear dimensionality reduction algorithm called multi-layer isometric feature mapping (ML-Isomap). First, a clustering algorithm is utilized to partition the high-dimensional data points into a set of data blocks in the high-dimensional feature space. Second, intra-cluster graphs are constructed based on the individual character of each data block to build the basic layer for the ML-Isomap. Third, the inter-cluster graph is constructed by analyzing the interrelation among these isolated data blocks to build the hyper-layers for the ML-Isomap. Finally, all the data points are mapped into the unique low-dimensional feature space by maintaining to the greatest extent the corresponding relations of the multiple layers in the high-dimensional feature space. Comparative experiments on synthetic data as well as real rushes editing tasks demonstrate that the proposed algorithm can reduce the dimensions of various datasets efficiently while preserving both the global structure and the local details of the heterogeneous dataset.

[1]  Yan Liu,et al.  The Hong Kong Polytechnic University at TRECVID 2007 BBC rushes summarization , 2007, TVS '07.

[2]  Bruno R. Preiss,et al.  Data Structures and Algorithms with Object-Oriented Design Patterns in Java , 1999 .

[3]  Edwin P. D. Pednault,et al.  Decomposition of Heterogeneous Classification Problems , 1997, IDA.

[4]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Alan F. Smeaton,et al.  A user-centered approach to rushes summarisation via highlight-detected keyframes , 2007, TVS '07.

[7]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Bernard Mérialdo,et al.  Split-screen dynamically accelerated video summaries , 2007, TVS '07.

[9]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[10]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[11]  Jorma Laaksonen,et al.  Rushes summarization with self-organizing maps , 2007, TVS '07.

[12]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[13]  Geir Agnarsson Graph Theory , 2006 .

[14]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[15]  Yung-Yu Chuang,et al.  NTU TRECVID-2007 fast rushes summarization system , 2007, TVS '07.

[16]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[17]  Wei-Hao Lin,et al.  Clever clustering vs. simple speed-up for summarizing rushes , 2007, TVS '07.

[18]  Dimitrios Gunopulos,et al.  Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.

[19]  Sebastiano Battiato,et al.  Advanced indexing schema for imaging applications: three case studies , 2007 .

[20]  Avideh Zakhor,et al.  Content analysis of video using principal components , 1998, IEEE Trans. Circuits Syst. Video Technol..

[21]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Werner Bailer,et al.  Skimming rushes video using retake detection , 2007, TVS '07.

[23]  Ken Dancyger,et al.  The Technique of Film and Video Editing: History, Theory, and Practice , 1993 .

[24]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[25]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[26]  Xuelong Li,et al.  General Averaged Divergence Analysis , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[27]  E. Dmytryk On Film Editing: An Introduction to the Art of Film Construction , 1984 .

[28]  Duy-Dinh Le,et al.  National institute of informatics, japan at TRECVID 2007: BBC rushes summarization , 2007, TVS '07.

[29]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[30]  Jiawei Han,et al.  CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..

[31]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[32]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[33]  Yue Gao,et al.  THU-ICRC at rush summarization of TRECVID 2007 , 2007, TVS '07.

[34]  Hans-Peter Kriegel,et al.  Subspace selection for clustering high-dimensional data , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[35]  Aggelos K. Katsaggelos,et al.  Locally Embedded Linear Subspaces for Efficient Video Indexing and Retrieval , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[36]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[37]  A fuzzy clustering algorithm based on the k-nearest neighbors rule for the detection of evolution , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[38]  Andrew K. C. Wong,et al.  Statistical Technique for Extracting Classificatory Knowledge from Databases , 1991, Knowledge Discovery in Databases.

[39]  Maja J. Mataric,et al.  A spatio-temporal extension to Isomap nonlinear dimension reduction , 2004, ICML.

[40]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[41]  A.K.C. Wong,et al.  Attribute clustering for grouping, selection, and classification of gene expression data , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[42]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[43]  Chong-Wah Ngo,et al.  Rushes video summarization by object and event understanding , 2007, TVS '07.

[44]  Pavel Zemcík,et al.  Video summarization at Brno University of Technology , 2007, TVS '07.

[45]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[46]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Roger Crittenden Film and Video Editing , 1996 .

[48]  Guozhu Dong Knowledge Discovery in Databases , 2002 .

[49]  John Adcock,et al.  Video summarization preserving dynamic content , 2007, TVS '07.

[50]  Robert Pless,et al.  Image spaces and video trajectories: using Isomap to explore video sequences , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[51]  Christophe Marsala,et al.  Video rushes summarization by adaptive acceleration and stacking of shots , 2007, TVS '07.

[52]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[53]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[54]  Marcus A. Magnor,et al.  Keyframe Animation from Video , 2006, 2006 International Conference on Image Processing.

[55]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Wen Gao,et al.  Isomap Based on the Image Euclidean Distance , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[57]  Zhi-Hua Zhou,et al.  Supervised nonlinear dimensionality reduction for visualization and classification , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[58]  José María Martínez Sanchez,et al.  On-line video skimming based on histogram similarity , 2007, TVS '07.

[59]  Miguel Á. Carreira-Perpiñán,et al.  A Review of Dimension Reduction Techniques , 2009 .

[60]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[61]  Paul Over,et al.  The trecvid 2007 BBC rushes summarization evaluation pilot , 2007, TVS '07.