Structures of peptides from α‐amino acids methylated at the α‐carbon ,

The structural preferences of peptides (and depsipeptides) from the achiral MeAib and Hib residues, and the chiral Iva, (αMe) Val, (αMe) Leu, and (αMe) Phe residues, as determined by conformational energy computations, x‐ray diffraction analyses, and 1H‐nmr and spectroscopic studies, are reviewed and compared with literature data on Aib‐containing peptides. The results obtained indicate that helical structures are preferentially adopted by peptides rich in these α‐amino acids methylated at the α‐carbon. Intriguing experimental findings on the impact of the chirality of Iva, (αMe) Val, and (αMe) Phe residues on helix screw sense are illustrated. © 1993 John Wiley & Sons, Inc.

[1]  C. Toniolo,et al.  Peptaibol antibiotics: a study on the helical structure of the 2-9 sequence of emerimicins III and IV. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[2]  C. Toniolo,et al.  Intramolecularly hydrogen-bonded peptide conformations. , 1980, CRC critical reviews in biochemistry.

[3]  E. Blout,et al.  The conformation of gramicidin A. , 1974, Biochemistry.

[4]  D. Langs,et al.  Three-dimensional structure at 0.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. , 1988, Science.

[5]  Urry Dw,et al.  The Gramicidin A Transmembrane Channel: A Proposed π(L,D) Helix , 1971 .

[6]  J. Flippen-Anderson,et al.  Crystal structure of [Leu1]zervamicin, a membrane ion-channel peptide: implications for gating mechanisms. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Heimgartner,et al.  Synthesis and conformation of artificial linear and cyclic model peptides containing α,α-disubstituted α-amino acids , 1991 .

[8]  P. Balaram,et al.  Alamethicin, a Transmembrane Channel , 1981 .

[9]  C. Toniolo,et al.  Monomer units for the β-bend ribbon structure: MeAib peptides* , 1992 .

[10]  A. Mallet Structure and activity of natural peptides Edited by W Voelter and G Weitzel. pp 634. Walter de Gruyter, Berlin. 1981. DM 150 , 1982 .

[11]  M. Mutter,et al.  Conformational studies on host-guest peptides containing chiral alpha-methyl-alpha-amino acids. Comparison of the helix-inducing potential of alpha-aminoisobutyric acid, (S)-2-ethylalanine and (S)-2-methylserine. , 2009, International journal of peptide and protein research.

[12]  H. Schoemaker,et al.  New aspartame-like sweeteners containing L-(αMe)Phe , 1992 .

[13]  C. Toniolo,et al.  Crystal state conformation of three model monomer units for the β‐bend ribbon structure , 1991 .

[14]  C. Toniolo Structural Versatility of Homo‐peptides from Cα,α‐dialkylated Glycines , 1986 .

[15]  C. Alemán,et al.  A molecular mechanical study of the structure of poly(α‐aminoisobutyric acid) , 1992 .

[16]  C. Toniolo Structure of conformationally constrained peptides: From model compounds to bioactive peptides , 1989, Biopolymers.

[17]  J. Clardy,et al.  Structure of Efrapeptins From the Fungus Tolypocladium Niveum: Peptide Inhibitors of Mitochondrial ATPase , 1992 .

[18]  C. Toniolo,et al.  Linear oligopeptides. 188.' Crystallographic characterization of the conformation of the 1-aminocyclopentane-1-carboxylic acid residue in simple derivatives , 1988 .

[19]  H. Heimgartner 3-Amino-2H-Azirines. Synthons for α,α-Disubstituted α-Amino Acids in Heterocycle and Peptide Synthesis [New Analytical Methods (43)] , 1991 .

[20]  P. Balaram,et al.  The stereochemistry of peptides containing alpha-aminoisobutyric acid. , 1984, CRC critical reviews in biochemistry.

[21]  C. Toniolo,et al.  Bioorganic stereochemistry. A study of the peptide oxazolones from Z-(Aib)n-OH (n = 2-4) in the solid state. , 2009, International journal of peptide and protein research.

[22]  S. Kent,et al.  Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected]. , 1992, Science.

[23]  R. Chandrasekaran,et al.  The conformation of polypeptides containing alternating L- and D-amino acids. , 1978, CRC critical reviews in biochemistry.

[24]  A. Aubry,et al.  Modulations conformationnelles du repliement β en série peptidique et pseudopeptidique , 1988 .

[25]  V. Hruby,et al.  Emerging approaches in the molecular design of receptor-selective peptide ligands: conformational, topographical and dynamic considerations. , 1990, The Biochemical journal.

[26]  C. Toniolo,et al.  Structures of polypeptides from α-amino acids disubstituted at the α-carbon , 1991 .

[27]  J. Clardy,et al.  Structures of the efrapeptins : potent inhibitors of mitochondrial ATPase from the fungus Tolypocladium niveum , 1991 .

[28]  C. Toniolo,et al.  Crystal and molecular structures of two N-carboxy anhydrides of Cα,α-disubstituted glycines , 1992 .

[29]  H. Heimgartner,et al.  Konformationsanalysen von Modell‐Tripeptiden: Der Einfluss von α,α‐disubstituierten α‐Aminosäuren auf die Sekundärstruktur. Teil I. NMR‐ und CD‐Untersuchungen , 1988 .

[30]  Manfred Mutter,et al.  A Chemical Approach to Protein Design—Template‐Assembled Synthetic Proteins (TASP) , 1989 .

[31]  H. Schoemaker,et al.  Peptides from chiral C alpha,alpha-disubstituted glycines. Crystallographic characterization of conformation of C alpha-methyl, C alpha-isopropylglycine [(alpha Me)Val] in simple derivatives and model peptides. , 2009, International journal of peptide and protein research.

[32]  H. Brückner,et al.  (−)-isovaline: confirmation of its D-(R)-configuration by X-ray analysis of its N-chloroacetyl derivative , 1982 .

[33]  J. Flippen-Anderson,et al.  Conformation of a 16-residue zervamicin IIA analog peptide containing three different structural features: 3(10)-helix, alpha-helix, and beta-bend ribbon. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[34]  W. Hutton,et al.  Emerimicins III and IV and Their Ethylalanine12 Epimers. Facilitated Chemical-Enzymatic Synthesis and a Qualitative Evaluation of Their Solution Structures , 1992 .

[35]  C. Toniolo,et al.  Structural versatility of peptides from Cα,α‐disubstituted glycines: Preferred conformation of the chiral isovaline residue , 1991 .

[36]  E. M. Holt,et al.  Crystallographic characterization of conformation of 1-aminocyclopropane-1-carboxylic acid residue (Ac3c) in simple derivatives and peptides. , 2009, International journal of peptide and protein research.

[37]  R. Sheppard,et al.  Peptides—XI: Synthesis of peptides derived from alpha-methylalanine , 1960 .

[38]  C. Toniolo,et al.  First observation of a helical peptide containing a chiral residue without a preferred screw sense , 1989 .

[39]  C. Toniolo Conformationally restricted peptides through short-range cyclizations. , 2009, International journal of peptide and protein research.

[40]  T. M. Balasubramanian,et al.  tert-Butoxycarbonyl-α-methyl-l-phenylalanyl-l-valine benzyl ester , 1981 .

[41]  H. Heimgartner,et al.  Konformationsanalysen von Modell‐Tripeptiden: Der Einfluss von α,α‐disubstituierten α‐Aminosäuren auf die Sekundärstruktur. Teil II. Röntgenstrukturanalyse und Konformationsenergie‐Berechnungen , 1988 .

[42]  I. Karle,et al.  Structural characteristics of alpha-helical peptide molecules containing Aib residues. , 1990, Biochemistry.

[43]  V. Barone,et al.  Structural versatility of peptides from Cα,α‐dialkylated glycines. I. A conformational energy computation and x‐ray diffraction study of homo‐peptides from Cα,α‐diethylglycine , 1988 .

[44]  Claudio Toniolo,et al.  Preferred conformations of peptides containing α,α‐disubstituted α‐amino acids , 1983 .

[45]  C. Toniolo,et al.  Characterization at atomic resolution of peptide helical structures , 1992, Biopolymers.

[46]  C. Toniolo,et al.  A novel peptide conformation: First unequivocal observation of the oxy‐analog of a β‐bend , 1986 .