Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons

Salient stimuli redirect attention and suppress ongoing motor activity. This attentional shift is thought to rely upon thalamic signals to the striatum to shift cortically driven action selection, but the network mechanisms underlying this interaction are unclear. Using a brain slice preparation that preserved cortico- and thalamostriatal connectivity, it was found that activation of thalamostriatal axons in a way that mimicked the response to salient stimuli induced a burst of spikes in striatal cholinergic interneurons that was followed by a pause lasting more than half a second. This patterned interneuron activity triggered a transient, presynaptic suppression of cortical input to both major classes of principal medium spiny neuron (MSN) that gave way to a prolonged enhancement of postsynaptic responsiveness in striatopallidal MSNs controlling motor suppression. This differential regulation of the corticostriatal circuitry provides a neural substrate for attentional shifts and cessation of ongoing motor activity with the appearance of salient environmental stimuli.

[1]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[2]  P. Calabresi,et al.  Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP , 1999, Neuropharmacology.

[3]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[4]  Charles J. Wilson,et al.  Cholinergic interneuron characteristics and nicotinic properties in the striatum. , 2002, Journal of neurobiology.

[5]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[6]  D. Surmeier,et al.  M1 Muscarinic Acetylcholine Receptor in Cultured Rat Neostriatum Regulates Phosphoinositide Hydrolysis , 1990, Journal of neurochemistry.

[7]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[8]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  P. Calabresi,et al.  Muscarinic IPSPs in rat striatal cholinergic interneurones , 1998, The Journal of physiology.

[10]  Yuchun Zhang,et al.  Involvement of Ih in Dopamine Modulation of Tonic Firing in Striatal Cholinergic Interneurons , 2007, The Journal of Neuroscience.

[11]  Charles J. Wilson,et al.  Intrinsic Membrane Properties Underlying Spontaneous Tonic Firing in Neostriatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[12]  M. Frank,et al.  Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. , 2006, Psychological review.

[13]  J. Bolam,et al.  Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat , 1992, Neuroscience.

[14]  J. Bargas,et al.  Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. , 2005, Journal of neurophysiology.

[15]  P. Calabresi,et al.  Blockade of M2‐like muscarinic receptors enhances long‐term potentiation at corticostriatal synapses , 1998 .

[16]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[17]  Michael E. Ragozzino,et al.  Differential involvement of M1-type and M4-type muscarinic cholinergic receptors in the dorsomedial striatum in task switching , 2008, Neurobiology of Learning and Memory.

[18]  Huanmian Chen,et al.  Recurrent Inhibitory Network among Striatal Cholinergic Interneurons , 2008, The Journal of Neuroscience.

[19]  S. Cragg,et al.  Nicotine amplifies reward-related dopamine signals in striatum , 2004, Nature Neuroscience.

[20]  J. Tepper,et al.  Dual Cholinergic Control of Fast-Spiking Interneurons in the Neostriatum , 2002, The Journal of Neuroscience.

[21]  D. Surmeier,et al.  Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons , 2007, Nature Neuroscience.

[22]  M. Kimura,et al.  Participation of the thalamic CM-Pf complex in attentional orienting. , 2002, Journal of neurophysiology.

[23]  M. Delong,et al.  Functional and pathophysiological models of the basal ganglia , 1996, Current Opinion in Neurobiology.

[24]  G Bernardi,et al.  Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. , 1998, The European journal of neuroscience.

[25]  D. James Surmeier,et al.  Corticostriatal and Thalamostriatal Synapses Have Distinctive Properties , 2008, The Journal of Neuroscience.

[26]  B. Sabatini,et al.  Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration , 2009, Nature Neuroscience.

[27]  A. Levey,et al.  Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A. Graybiel,et al.  A Network Representation of Response Probability in the Striatum , 2002, Neuron.

[29]  J. Wickens,et al.  Modulation of an Afterhyperpolarization by the Substantia Nigra Induces Pauses in the Tonic Firing of Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[30]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[31]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[32]  J. Bargas,et al.  Muscarinic presynaptic inhibition of neostriatal glutamatergic afferents is mediated by Q-type Ca2+ channels , 1999, Brain Research Bulletin.

[33]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[34]  J. A. Dani,et al.  Muscarinic and Nicotinic Cholinergic Mechanisms in the Mesostriatal Dopamine Systems , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[35]  F. Wouterlood,et al.  Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase‐immunoreactive neurons in nucleus accumbens of the rat: A light and electron microscopic study , 1990, The Journal of comparative neurology.

[36]  J. Bargas,et al.  Cholinergic Modulation of Neostriatal Output: a Functional Antagonism between Different Types of Muscarinic Receptors Materials and Methods , 1999 .

[37]  Weixing Shen,et al.  Cholinergic Suppression of KCNQ Channel Currents Enhances Excitability of Striatal Medium Spiny Neurons , 2005, The Journal of Neuroscience.

[38]  D. Sulzer,et al.  Frequency-dependent modulation of dopamine release by nicotine , 2004, Nature Neuroscience.

[39]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[40]  A. D. Smith,et al.  Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy , 1984, Neuroscience.

[41]  A. Graybiel,et al.  Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. , 2001, Journal of neurophysiology.

[42]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[43]  Joshua L Plotkin,et al.  Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites , 2008, The Journal of Neuroscience.

[44]  A. Graybiel,et al.  Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. , 1994, Science.

[45]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[46]  Thomas Wichmann,et al.  The thalamostriatal systems: Anatomical and functional organization in normal and parkinsonian states , 2009, Brain Research Bulletin.

[47]  Daniel Johnston,et al.  Deletion of Kv4.2 Gene Eliminates Dendritic A-Type K+ Current and Enhances Induction of Long-Term Potentiation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[48]  M. Deschenes,et al.  A Single‐cell Study of the Axonal Projections Arising from the Posterior Intralaminar Thalamic Nuclei in the Rat , 1996, The European journal of neuroscience.

[49]  S. Cragg,et al.  Striatal Muscarinic Receptors Promote Activity Dependence of Dopamine Transmission via Distinct Receptor Subtypes on Cholinergic Interneurons in Ventral versus Dorsal Striatum , 2010, The Journal of Neuroscience.

[50]  P S Goldman-Rakic,et al.  Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: Anatomical evidence for cholinergic modulation of glutamatergic prefronto‐striatal pathways , 2001, The Journal of comparative neurology.