A Study of the Effect of Mixed Cores on the Stability of BWRs

Cores loaded with a mixture of fuel types are known to reduce stability margins. Mixed fuel cores have become more common as utilities change fuel suppliers, or when fuel vendors upgrade their fuel designs to take advantage of improved thermal and mechanical margins. This paper studies some of the physical processes that reduce the stability of mixed cores. A number of runs have been performed using the LAPUR6 stability code to evaluate the effect on mixed cores on the stability of a typical BWR. To this end, two fuel types have been set up with two different single-phase to two-phase pressure drop ratios by artificially adjusting the spacer and inlet orifice friction coefficients. The flow and pressure drop characteristics of both fuels have been matched at full flow, full power conditions. All manufacturers match the pressure drop of new fuels so that the flow distributions among the new and old fuel elements operating at the same power are approximately constant. The critical power ratio and thermo-mechanical criteria are typically limiting at full power; therefore matching the flow performance at full power maximizes the margin to these criteria. Stability is of concern at low flows, especially at natural circulation, where the thermal-hydraulic conditions are significantly different from full flow and power. Our simulations show that even if two fuel elements are perfectly matched at full flow, the axial void fraction distribution changes significantly when the flow is reduced to natural circulation conditions and the two fuel elements are not fully thermal-hydraulically compatible at the reduced flows. Basically, the two fuel types set up two separate natural circulation lines, and one of the fuel types essentially starves the other from flow. Since stability has such a strong dependence with channel flow, the reactor stability is controlled by the fuel type that has the smaller flow at natural circulation. A counterintuitive result of this study shows that, in general, loading a more stable fuel type into a mixed core has the opposite effect, and the stability margin of that mixed core is lower until the new, more stable fuel becomes dominant. Because of the burnable Gadolinium in most modern BWR fuels, the highest reactivity fuel elements are the once-burned. Loading a more stable fuel type starves the flow of the high-reactivity older fuel, reducing the stability margin.© 2010 ASME