A unifying model involving a categorical and/or dimensional reduction for multimode data

Abstract A unifying model is presented that implies a categorical and/or dimensional reduction of one or several modes of a multiway data set. The model encompasses a broad range of (existing as well as to be developed) discrete, continuous, as well as hybrid discrete–continuous reduction models as special cases, which all imply a decomposition of the reconstructed data on the basis of quantifications of the different data modes and a linking array. An analysis of the objective or loss function associated with the model leads to two generic algorithmic strategies, the possibilities and limitations of which are the object of a subsequent discussion.

[1]  Iven Van Mechelen,et al.  Tucker3 hierarchical classes analysis , 2003 .

[2]  Iven Van Mechelen,et al.  Adapting the Formal to the Substantive: Constrained Tucker3-HICLASS , 2004, J. Classif..

[3]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[4]  Henk A. L. Kiers Clustering all three modes of three-mode data : Computational possibilities and problems , 2004 .

[5]  P. Groenen,et al.  Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima , 1997 .

[6]  Iven Van Mechelen,et al.  Hierarchical Classes Modeling of Rating Data , 2007 .

[7]  L. Guttman A basis for scaling qualitative data. , 1944 .

[8]  Hans-Hermann Bock,et al.  Two-mode clustering methods: astructuredoverview , 2004, Statistical methods in medical research.

[9]  W. DeSarbo,et al.  Three-way metric unfolding via alternating weighted least squares , 1985 .

[10]  Hans-Hermann Bock,et al.  On the Interface between Cluster Analysis, Principal Component Analysis, and Multidimensional Scaling , 1987 .

[11]  H. Kiers,et al.  Factorial k-means analysis for two-way data , 2001 .

[12]  Henk A. L. Kiers,et al.  COMPSTAT Proceedings in Computational Statistics , 1990 .

[13]  Kathleen Marchal,et al.  Joint mapping of genes and conditions via multidimensional unfolding analysis , 2007, BMC Bioinformatics.

[14]  Martin Schader,et al.  A New Algorithm for Two-Mode Clustering , 1996 .

[15]  Hans-Hermann Bock,et al.  Data Analysis and Information Systems , 1996 .

[16]  G J McLachlan,et al.  Mixture modelling for cluster analysis , 2004, Statistical methods in medical research.

[17]  Maurizio Vichi New Developments in Classification and Data Analysis , 2005 .

[18]  Iven Van Mechelen,et al.  The conjunctive model of hierarchical classes , 1995 .

[19]  Iven Van Mechelen,et al.  Hierarchical classes models for three-way three-mode binary data: interrelations and model selection , 2005 .

[20]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[21]  P. Boeck,et al.  Hierarchical classes: Model and data analysis , 1988 .

[22]  Iven Van Mechelen,et al.  Models for ordinal hierarchical classes analysis , 2001 .

[23]  Joseph S. Verducci,et al.  Multivariate Statistical Modeling and Data Analysis. , 1988 .

[24]  Harold Gulliksen,et al.  Contributions to mathematical psychology , 1964 .

[25]  C. Coombs A theory of data. , 1965, Psychology Review.

[26]  Peter Orlik,et al.  Three-Mode Hierarchical Cluster Analysis of Three-Way Three-Mode Data , 1994 .

[27]  W. Heiser,et al.  A latent class unfolding model for analyzing single stimulus preference ratings , 1993 .

[28]  Iven Van Mechelen,et al.  Indclas: A three-way hierarchical classes model , 1999 .

[29]  Jan Schepers,et al.  Three-mode partitioning , 2006, Comput. Stat. Data Anal..

[30]  Age K. Smilde,et al.  Constrained three‐mode factor analysis as a tool for parameter estimation with second‐order instrumental data , 1998 .