Discrete-time inverse model-based iterative learning control: stability, monotonicity and robustness

This paper considers the robustness of an inverse iterative learning control algorithm. A simple learning gain results in robust convergence that is monotonic in the least squares sense provided that the multiplicative plant uncertainty satisfies a matrix positivity requirement. The results are extended to the frequency domain using a simple graphical Nyquist test. The analysis extends naturally to a parameter-optimal control setting. Non-monotone convergence is considered by using a simple weighted norm based on exponential weighting of time series.

[1]  K. Moore,et al.  An algebraic approach to iterative learning control , 2004 .

[2]  David H. Owens,et al.  Analysis and Control of Multipass Processes , 1982 .

[3]  Ying Tan,et al.  Robust optimal design and convergence properties analysis of iterative learning control approaches , 2002, Autom..

[4]  B. Francis,et al.  Optimal Sampled-data Control , 1995 .

[5]  Luca Maria Gambardella,et al.  On the iterative learning control theory for robotic manipulators , 1988, IEEE J. Robotics Autom..

[6]  Eric Rogers,et al.  A new robust iterative learning control algorithm for application on a gantry robot , 2003, EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.03TH8696).

[7]  S. Hara,et al.  Repetitive control system: a new type servo system for periodic exogenous signals , 1988 .

[8]  D. Owens,et al.  Parameter optimization in iterative learning control , 2003 .

[9]  L. Cesari Functional analysis and boundary value problems , 1971 .

[10]  Svante Gunnarsson,et al.  On the disturbance properties of high order iterative learning control algorithms , 2006, Autom..

[11]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[12]  Kevin L. Moore,et al.  Iterative Learning Control: An Expository Overview , 1999 .

[13]  Eric Rogers,et al.  A Novel Repetitive Control Algorithm Combining ILC and Dead-Beat Control , 2004, ICINCO.

[14]  E. Rogers,et al.  Iterative learning control using optimal feedback and feedforward actions , 1996 .

[15]  Eric Rogers,et al.  Iterative Learning Control - What is it all about? , 2004 .

[16]  Kairui Feng Parameter optimisation in iterative learning control , 2003, 2003 European Control Conference (ECC).

[17]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[18]  Suguru Arimoto Passivity of robot dynamics implies capability of motor program learning , 1991 .

[19]  David H. Owens Multivariable and Optimal Systems , 1982 .

[20]  Eric Rogers,et al.  Practical implementation of a model inverse optimal iterative learning controller on a gantry robot , 2004 .

[21]  Roberto Horowitz,et al.  Learning Control of Robot Manipulators , 1993 .

[22]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[23]  Masayoshi Tomizuka,et al.  Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers , 1988, 1988 American Control Conference.

[24]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[25]  Ju-Jang Lee,et al.  Design of iterative learning controller with VCR servo system , 1993 .

[26]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[27]  Eric Rogers,et al.  Stability Analysis for Linear Repetitive Processes , 1992 .

[28]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[29]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[30]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[31]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[32]  N. Young An Introduction to Hilbert Space , 1988 .

[33]  David H. Owens,et al.  Iterative learning control - An optimization paradigm , 2015, Annu. Rev. Control..

[34]  S. H. Bang,et al.  Iterative learning control of heat-up phase for a batch polymerization reactor☆ , 1996 .

[35]  E. Nering,et al.  Linear Algebra and Matrix Theory , 1964 .