Borel oracles. An analytical approach to constant-time algorithms

In 2008 Nguyen and Onak constructed the first constant-time algorithm for the approximation of the size of the maximum matching in bounded degree graphs. The Borel oracle machinery is a tool that can be used to convert some statements in Borel graph theory to theorems in the field of constant-time algorithms. In this paper we illustrate the power of this tool to prove the existence of the above mentioned constant-time approximation algorithm.

[1]  Alexander S. Kechris,et al.  Topics in orbit equivalence , 2004 .

[2]  Miklós Laczkovich,et al.  Closed sets without measurable matching , 1988 .

[3]  Ronitt Rubinfeld,et al.  Sublinear Time Algorithms , 2011, SIAM J. Discret. Math..

[4]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[5]  Stevo Todorcevic,et al.  BOREL CHROMATIC NUMBERS , 1999 .

[6]  G. Elek Parameter testing in bounded degree graphs of subexponential growth , 2010 .

[7]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[8]  Béla Bollobás,et al.  The independence ratio of regular graphs , 1981 .

[9]  Kenji Obata,et al.  A lower bound for testing 3-colorability in bounded-degree graphs , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[10]  R. Häggkvist,et al.  Bipartite graphs and their applications , 1998 .

[11]  Krzysztof Onak,et al.  Constant-Time Approximation Algorithms via Local Improvements , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Gábor Elek,et al.  Parameter testing in bounded degree graphs of subexponential growth , 2007, Random Struct. Algorithms.