As one aspect of the endeavor to c r e a te new i n t e l l e c t u a l t o o l s f o r mankind, we w ish to enable computers to p rove , and t o a s s i s t i n the p roo f s o f , theorems o f mathematics and ( e v e n t u a l l y ) o t h e r d i s c i p l i n e s which have ach ieved the r e q u i s i t e l o g i c a l p r e c i s i o n . For t h i s purpose, a p a r t i c u l a r l y s u i t a b l e f o rma l language i s Church 's f o r m u l a t i o n [4] o f type t heo ry w i t h A -convers ion . i n t h i s language t r a d i t i o n a l mathemat ica l n o t a t i o n s can be expressed ve ry d i r e c t l y , and the i n t u i t i v e d i s t i n c t i o n s between d i f f e r e n t types of mathemat ica l e n t i t i e s (such as numb e r s , f u n c t i o n s , and se ts o f f u n c t i o n s ) are made s y n t a c t i c a l l y e x p l i c i t .
[1]
Gérard P. Huet,et al.
A Mechanization of Type Theory
,
1973,
IJCAI.
[2]
Peter B. Andrews.
Resolution in type theory
,
1971,
Journal of Symbolic Logic.
[3]
Tomasz Pietrzykowski,et al.
Mechanizing omega-Order Type Theory Through Unification
,
1976,
Theor. Comput. Sci..
[4]
Peter B. Andrews.
Resolution and the consistency of analysis
,
1974,
Notre Dame J. Formal Log..
[5]
Gerard P. Hubt.
A mechanization of type theory
,
1973,
IJCAI 1973.
[6]
Gérard P. Huet,et al.
A Unification Algorithm for Typed lambda-Calculus
,
1975,
Theor. Comput. Sci..
[7]
Alonzo Church,et al.
A formulation of the simple theory of types
,
1940,
Journal of Symbolic Logic.
[8]
Peter B. Andrews.
Refutations by Matings
,
1976,
IEEE Transactions on Computers.