The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues
暂无分享,去创建一个
Yoshimasa Nakamura | Masashi Iwasaki | Emiko Ishiwata | Akiko Fukuda | Yoshimasa Nakamura | M. Iwasaki | E. Ishiwata | A. Fukuda
[1] Y. Nakamura,et al. A new approach to numerical algorithms in terms of integrable systems , 2004, International Conference on Informatics Research for Development of Knowledge Society Infrastructure, 2004. ICKS 2004..
[2] W. Symes. The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .
[3] Y. Itoh. Integrals of a Lotka-Volterra System of Odd Number of Variables , 1987 .
[4] Yoshimasa Nakamura,et al. An application of the discrete Lotka–Volterra system with variable step-size to singular value computation , 2004 .
[5] A. Zhedanov,et al. Discrete-time Volterra chain and classical orthogonal polynomials , 1997 .
[6] Yoshimasa Nakamura,et al. On the convergence of a solution of the discrete Lotka-Volterra system , 2002 .
[7] R. Hirota. Conserved Quantities of “Random-Time Toda Equation” , 1997 .
[8] O. Bogoyavlensky. Integrable discretizations of the KdV equation , 1988 .
[9] Yoshimasa Nakamura,et al. The Discrete Relativistic Toda Molecule Equation and a Padé Approximation Algorithm , 2001, Numerical Algorithms.
[10] Moody T. Chu,et al. A differential equation approach to the singular value decomposition of bidiagonal matrices , 1986 .
[11] J. Moser. Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .
[12] R. Hirota. Discrete Analogue of a Generalized Toda Equation , 1981 .
[13] Moody T. Chu,et al. Linear algebra algorithms as dynamical systems , 2008, Acta Numerica.
[14] S. Tsujimoto. An extension and discretization of Volterra equation I , 1993 .
[15] Yoshimasa Nakamura,et al. Calculating Laplace Transforms in Terms of the Toda Molecule , 1998, SIAM J. Sci. Comput..