Reasoning about NP-complete Constraints

The concept of local consistency-making global deductions from local infeasibility-is central to constraint programming. When reasoning about NP-complete constraints, however, since achieving a "complete" form of local consistency is often considered too hard, we need other tools to design and analyze propagation algorithms. In this paper, we argue that NP-complete constraints are an essential part of constraint programming , that designing dedicated methods has lead to, and will bring, significant breakthroughs, and that we need to carefully investigate methods to deal about a necessarily incomplete inference. In particular, we advocate the use of fixed-parameter tractability and kernelization to this purpose.

[1]  P. D. Ozonia,et al.  Sydney , 1916 .

[2]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[3]  Torben Hagerup Kernels for Edge Dominating Set: Simpler or Smaller , 2012, MFCS.

[4]  Emile H. L. Aarts,et al.  Constraint Satisfaction for Multiple Capacitated Job Shop Scheduling , 1994, European Conference on Artificial Intelligence.

[5]  Christian Bessiere,et al.  Proceedings of the 13th international conference on Principles and practice of constraint programming , 2007 .

[6]  Jean-Charles Régin,et al.  Generalized Arc Consistency for Global Cardinality Constraint , 1996, AAAI/IAAI, Vol. 1.

[7]  Gilles Pesant,et al.  A Regular Language Membership Constraint for Finite Sequences of Variables , 2004, CP.

[8]  Peter van Beek,et al.  Improved Algorithms for the Global Cardinality Constraint , 2004, CP.

[9]  Toby Walsh,et al.  Decomposition of the NValue Constraint , 2009, CP.

[10]  Pascal Van Hentenryck Computational Disaster Management , 2013, IJCAI.

[11]  R. Lathe Phd by thesis , 1988, Nature.

[12]  Joxan Jaffar Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming , 1999 .

[13]  Barry O'Sullivan,et al.  Constraints of Difference and Equality: A Complete Taxonomic Characterisation , 2009, CP.

[14]  Marvin A. Carlson Editor , 2015 .

[15]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[16]  Claude Le Pape Des systèmes d'ordonnancement flexibles et opportunistes , 1988 .

[17]  Michael R. Fellows,et al.  Crown Structures for Vertex Cover Kernelization , 2007, Theory of Computing Systems.

[18]  Emmanuel Hebrard,et al.  Scheduling Scientific Experiments on the Rosetta/Philae Mission , 2012, CP.

[19]  Toby Walsh,et al.  Filtering Algorithms for the NValue Constraint , 2006, Constraints.

[20]  John N. Hooker,et al.  Cost-Bounded Binary Decision Diagrams for 0-1 Programming , 2007, CPAIOR.

[21]  Torsten Fahle Integrating concepts from constraint programming and operations research algorithms , 2002 .

[22]  Jean-Charles Régin,et al.  Using Constraint Programming to Solve the Maximum Clique Problem , 2003, CP.

[23]  Mats Carlsson,et al.  Sweep as a Generic Pruning Technique Applied to the Non-overlapping Rectangles Constraint , 2001, CP.

[24]  Philippe Baptiste,et al.  A Theoretical and Experimental Comparison of Constraint Propagation Techniques for Disjunctive Scheduling , 1995, IJCAI.

[25]  Toby Walsh,et al.  Proceedings of the 7th International Conference on Principles and Practice of Constraint Programming , 2001 .

[26]  Barry O'Sullivan,et al.  A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem , 2009, CPAIOR.

[27]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[28]  Petr Vilím,et al.  Max Energy Filtering Algorithm for Discrete Cumulative Resources , 2009, CPAIOR.

[29]  Ian P. Gent Proceedings of the 15th international conference on Principles and practice of constraint programming , 2009 .

[30]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[31]  Hadrien Cambazard,et al.  Alternative Filtering for the Weighted Circuit Constraint: Comparing Lower Bounds for the TSP and Solving TSPTW , 2016, AAAI.

[32]  Gilles Pesant,et al.  On global warming: Flow-based soft global constraints , 2006, J. Heuristics.

[33]  Khaled M. Elbassioni,et al.  Simultaneous matchings: Hardness and approximation , 2008, J. Comput. Syst. Sci..

[34]  Philippe Baptiste,et al.  Constraint Propagation and Decomposition Techniques for Highly Disjunctive and Highly Cumulative Project Scheduling Problems , 1997, Constraints.

[35]  Emmanuel Hebrard,et al.  Propagation via Kernelization: The Vertex Cover Constraint , 2016, CP.

[36]  Christian Bessiere,et al.  The Parameterized Complexity of Global Constraints , 2008, AAAI.

[37]  Howard Straubing,et al.  Theory of Computing Systems , 2008 .