Category-specificity in visual object recognition

Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been demonstrated in neurologically intact subjects, but the findings are contradictory and there is no agreement as to why category-effects arise. This article presents a pre-semantic account of category-effects (PACE) in visual object recognition. PACE assumes two processing stages: shape configuration (the binding of shape elements into elaborate shape descriptions) and selection (among competing representations in visual long-term memory), which are held to be differentially affected by the structural similarity between objects. Drawing on evidence from clinical studies, experimental studies with neurologically intact subjects and functional imaging studies, it is argued that PACE can account for category-effects at both behavioural and neural levels in patients and neurologically intact subjects. The theory also accounts for the way in which category-effects are affected by different task parameters (the degree of perceptual differentiation called for), stimulus characteristics (whether stimuli are presented as silhouettes, full line-drawings, or fragmented forms), stimulus presentation (stimulus exposure duration and position) as well as interactions between these parameters.

[1]  S M Kosslyn,et al.  Identifying objects seen from different viewpoints. A PET investigation. , 1994, Brain : a journal of neurology.

[2]  C. Price,et al.  A functional neuroimaging study of the variables that generate category-specific object processing differences. , 1999, Brain : a journal of neurology.

[3]  Manila Vannucci,et al.  Hemispheric asymmetry for spatially filtered stimuli belonging to different semantic categories. , 2004, Brain research. Cognitive brain research.

[4]  S. Kosslyn,et al.  Identifying objects at different levels of hierarchy: A positron emission tomography study , 1995 .

[5]  Toby J. Lloyd-Jones,et al.  Outline shape is a mediator of object recognition that is particularly important for living things , 2002, Memory & cognition.

[6]  G. Humphreys,et al.  Hierarchies, similarity, and interactivity in object recognition: “Category-specific” neuropsychological deficits , 2001, Behavioral and Brain Sciences.

[7]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[8]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[9]  Keith R. Laws,et al.  “Illusions of Normality”: a Methodological Critique of Category-Specific Naming , 2005, Cortex.

[10]  Toby J. Lloyd-Jones,et al.  Sources of error in picture naming under time pressure , 2007, Memory & cognition.

[11]  David Gaffan,et al.  A Spurious Category-Specific Visual Agnosia for Living Things in Normal Human and Nonhuman Primates , 1993, Journal of Cognitive Neuroscience.

[12]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[13]  Christian Gerlach,et al.  Structural similarity causes different category-effects depending on task characteristics , 2001, Neuropsychologia.

[14]  Matthew H. Davis,et al.  Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI , 2002, Neuropsychologia.

[15]  A J Parkin,et al.  Naming Impairments following Recovery from Herpes Simplex Encephalitis: Category-Specific? , 1992, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[16]  T. Sanocki Time course of object identification: evidence for a global-to-local contingency. , 1993, Journal of experimental psychology. Human perception and performance.

[17]  Marta Kutas,et al.  Neurophysiological Evidence for the Time Course of Activation of Global Shape, Part, and Local Contour Representations during Visual Object Categorization and Memory , 2007, Journal of Cognitive Neuroscience.

[18]  S. Kosslyn Image and Brain: The Resolution of the Imagery Debate , 1994, Journal of Cognitive Neuroscience.

[19]  K. Cave,et al.  Can We Lose Memories of Faces? Content Specificity and Awareness in a Prosopagnosic , 1991, Journal of Cognitive Neuroscience.

[20]  D. Caplan,et al.  Cognition, emotion and the cerebellum. , 2006, Brain : a journal of neurology.

[21]  L. Miller,et al.  Category-specific knowledge deficit for animals in a patient with herpes simplex encephalitis , 2006, Cognitive neuropsychology.

[22]  K. A. Hadland,et al.  The Effect of Cingulate Cortex Lesions on Task Switching and Working Memory , 2003, Journal of Cognitive Neuroscience.

[23]  R. Knight,et al.  Component mechanisms underlying the processing of hierarchically organized patterns: inferences from patients with unilateral cortical lesions. , 1990, Journal of experimental psychology. Learning, memory, and cognition.

[24]  Mark M Schira,et al.  Differential contribution of early visual areas to the perceptual process of contour processing. , 2004, Journal of neurophysiology.

[25]  Leslie G. Ungerleider,et al.  Texture segregation in the human visual cortex: A functional MRI study. , 2000, Journal of neurophysiology.

[26]  M. Kiefer,et al.  Perceptual and semantic sources of category-specific effects: Event-related potentials during picture and word categorization , 2001, Memory & cognition.

[27]  J. Rodd,et al.  Anteromedial temporal cortex supports fine-grained differentiation among objects. , 2005, Cerebral cortex.

[28]  A Berthoz,et al.  Visual perception of motion and 3-D structure from motion: an fMRI study. , 2000, Cerebral cortex.

[29]  J. Desmond,et al.  Neuroimaging studies of the cerebellum: language, learning and memory , 1998, Trends in Cognitive Sciences.

[30]  Tim M. Gale,et al.  The influence of surface and edge-based visual similarity on object recognition , 2003, Brain and Cognition.

[31]  Measuring the influence of similarity on category-specific effects , 2008 .

[32]  A. Caramazza,et al.  WHAT ARE THE FACTS OF SEMANTIC CATEGORY-SPECIFIC DEFICITS? A CRITICAL REVIEW OF THE CLINICAL EVIDENCE , 2003, Cognitive neuropsychology.

[33]  Christian Gerlach,et al.  A case of impaired shape integration: Implications for models of visual object processing , 2005 .

[34]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Giuseppe Sartori,et al.  The oyster with four legs: A neuropsychological study on the interaction of visual and semantic information , 1998 .

[36]  R. Poldrack,et al.  Dissociable Controlled Retrieval and Generalized Selection Mechanisms in Ventrolateral Prefrontal Cortex , 2005, Neuron.

[37]  J. G. Snodgrass,et al.  The role of visual similarity in picture categorization. , 1986, Journal of experimental psychology. Learning, memory, and cognition.

[38]  G. Humphreys,et al.  Category specificity in brain and mind , 2002 .

[39]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[40]  N Birbaumer,et al.  Category-specific semantic impairment in Alzheimer's disease and temporal lobe dysfunction: a comparative study. , 1994, Journal of clinical and experimental neuropsychology.

[41]  G. Humphreys,et al.  Object identification in simultanagnosia: When wholes are not the sum of their parts , 2004, Cognitive Neuropsychology.

[42]  Elaine Funnell,et al.  Categories of knowledge? unfamiliar aspects of living and nonliving things , 1992 .

[43]  N. Davey,et al.  Visual Similarity is Greater for Line Drawings of Nonliving Than Living Things: The Importance of Musical Instruments and Body Parts , 2002, Brain and Cognition.

[44]  M. Farah,et al.  Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Westwood,et al.  Manipulability and living/non-living category effects on object identification , 2005, Brain and Cognition.

[46]  F. Lucchelli,et al.  Are Semantic Systems Separately Represented in the Brain? The Case of Living Category Impairment , 1994, Cortex.

[47]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[48]  Johan Wagemans,et al.  Identification of Everyday Objects on the Basis of Fragmented Outline Versions , 2008, Perception.

[49]  E. Warrington,et al.  The bare bones of object recognition: implications from a case of object recognition impairment , 1999, Neuropsychologia.

[50]  R. Kimchi,et al.  Perceptual organization in vision : behavioral and neural perspectives , 2003 .

[51]  M. Behrmann Neuropsychological Approaches to Perceptual Organization , 2006 .

[52]  Rafael Malach,et al.  Rapid completion effects in human high-order visual areas , 2004, NeuroImage.

[53]  S. Thompson-Schill Neuroimaging studies of semantic memory: inferring “how” from “where” , 2003, Neuropsychologia.

[54]  Guido Gainotti,et al.  What the Locus of Brain Lesion Tells us About the Nature of the Cognitive Defect Underlying Category-Specific Disorders: A Review , 2000, Cortex.

[55]  Glyn W. Humphreys,et al.  Do Pixel-Level Analyses Describe Psychological Perceptual Similarity? A Comment on ‘Category-Specific Naming and the ‘Visual’ Characteristics of Line Drawn Stimuli’ by Laws and Gale , 2002, Cortex.

[56]  T. Gale,et al.  Crowded and sparse domains in object recognition: Consequences for categorization and naming , 2006, Brain and Cognition.

[57]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[58]  Martin Arguin,et al.  Semantic and Visual Determinants of Face Recognition in a Prosopagnosic Patient , 1998, Journal of Cognitive Neuroscience.

[59]  B. Laeng,et al.  The visual basis of category effects in object identification: Evidence from the visual hemifield paradigm , 2006, Brain and Cognition.

[60]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[61]  M. Bar,et al.  Cortical Mechanisms Specific to Explicit Visual Object Recognition , 2001, Neuron.

[62]  Keith R. Laws,et al.  Gender Affects Naming Latencies for Living and Nonliving Things: Implications for Familiarity , 1999, Cortex.

[63]  O. Paulson,et al.  Perceptual differentiation and category effects in normal object recognition: a PET study. , 1999, Brain : a journal of neurology.

[64]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurons in visual cortical area V3A of the macaque monkey , 1988, Vision Research.

[65]  M. Ernst,et al.  The statistical determinants of adaptation rate in human reaching. , 2008, Journal of vision.

[66]  K. Laws,et al.  A ‘normal’ category-specific advantage for naming living things , 1999, Neuropsychologia.

[67]  S. Pitzalis,et al.  Identification of fragmented pictures in patients with brain damage. , 1998, Applied Neuropsychology.

[68]  Glyn W. Humphreys,et al.  On Naming a Giraffe a Zebra: Picture Naming Errors Across Different Object Categories , 1993 .

[69]  Giuseppe Sartori,et al.  Semantic relevance explains category effects in medial fusiform gyri , 2006, NeuroImage.

[70]  Category-Specific Effects in Object Identification: What is “Normal”? , 2005, Cortex.

[71]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[72]  Richard S. J. Frackowiak,et al.  A voxel‐based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory , 2000, Annals of neurology.

[73]  M. Tarr,et al.  DOES VISUAL SUBORDINATE-LEVEL CATEGORISATION ENGAGE THE FUNCTIONALLY DEFINED FUSIFORM FACE AREA? , 2000, Cognitive neuropsychology.

[74]  Irene P. Kan,et al.  Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Schmahmann,et al.  The cerebellar cognitive affective syndrome. , 1998, Brain : a journal of neurology.

[76]  G W Humphreys,et al.  Memories are made of this: the effects of time on stored visual knowledge in a case of visual agnosia. , 1999, Brain : a journal of neurology.

[77]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[78]  Johan Wagemans,et al.  Time-course contingencies in perceptual organization and identification of fragmented object outlines. , 2009, Journal of experimental psychology. Human perception and performance.

[79]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.

[80]  Johan Wagemans,et al.  Identification of Everyday Objects on the Basis of Silhouette and Outline Versions , 2007, Perception.

[81]  S. Zeki A vision of the brain , 1993 .

[82]  A. Caramazza,et al.  The organisation of conceptual knowledge in the brain: The future's past and some future directions , 2006, Cognitive neuropsychology.

[83]  T. Gale,et al.  The Effect of ‘Masking’ on Picture Naming , 2002, Cortex.

[84]  Glyn W. Humphreys,et al.  Perceptual differentiation as a source of category effects in object processing: Evidence from naming and object decision , 1997, Memory & cognition.

[85]  K. Laws,et al.  LOSS OF STORED KNOWLEDGE OF OBJECT STRUCTURE: IMPLICATIONS FOR “CATEGORY-SPECIFIC” DEFICITS , 2000, Cognitive neuropsychology.

[86]  G W Humphreys,et al.  The Effects of Surface Detail on Object Categorization and Naming , 1989, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[87]  E. Forde,et al.  The role of local and global processing in the recognition of living and nonliving things , 2006, Neuropsychologia.

[88]  Marlene Behrmann,et al.  Impairments in part–whole representations of objects in two cases of integrative visual agnosia , 2007, Cognitive neuropsychology.

[89]  M. Vannucci,et al.  Identification of spatially filtered stimuli as function of the semantic category. , 2001, Brain research. Cognitive brain research.

[90]  Johan Wagemans,et al.  The representation of subordinate shape similarity in human occipitotemporal cortex. , 2008, Journal of vision.

[91]  I Law,et al.  Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge , 2002, Neuropsychologia.

[92]  Bradford Z. Mahon,et al.  The organization of conceptual knowledge: the evidence from category-specific semantic deficits , 2003, Trends in Cognitive Sciences.

[93]  Karl J. Friston,et al.  Anatomic Constraints on Cognitive Theories of Category Specificity , 2002, NeuroImage.

[94]  Keith R. Laws,et al.  The impact of colour, spatial resolution, and presentation speed on category naming , 2006, Brain and Cognition.

[95]  Christian Gerlach,et al.  A Review of Functional Imaging Studies on Category Specificity , 2007, Journal of Cognitive Neuroscience.

[96]  A. Olson,et al.  Does normal processing provide evidence of specialised semantic subsystems? , 2005 .

[97]  The influence of visual and nonvisual attributes in visual object identification , 2006, Journal of the International Neuropsychological Society.

[98]  T. Hendler,et al.  Object-completion effects in the human lateral occipital complex. , 2002, Cerebral cortex.

[99]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[100]  Martin Arguin,et al.  Shape Integration for Visual Object Recognition and Its Implication in Category-Specific Visual Agnosia , 1996 .

[101]  Olaf B. Paulson,et al.  Structural similarity and category-specificity: a refined account , 2004, Neuropsychologia.

[102]  Alfonso Caramazza,et al.  The interpretation of semantic category-specific deficits: What do they reveal about the organizatio , 1998 .

[103]  P. Fletcher,et al.  DO SEMANTIC CATEGORIES ACTIVATE DISTINCT CORTICAL REGIONS? EVIDENCE FOR A DISTRIBUTED NEURAL SEMANTIC SYSTEM , 2003, Cognitive neuropsychology.

[104]  L. K. Tyler,et al.  Conceptual Structure and the Structure of Concepts: A Distributed Account of Category-Specific Deficits , 2000, Brain and Language.

[105]  Ravi S. Menon,et al.  The effects of visual object priming on brain activation before and after recognition , 2000, Current Biology.

[106]  E. Funnell Apperceptive agnosia and the visual recognition of object categories in dementia of the Alzheimer type , 2000 .

[107]  R. Thatcher Functional neuroimaging : technical foundations , 1994 .

[108]  M. Behrmann,et al.  Independent representation of parts and the relations between them: evidence from integrative agnosia. , 2006, Journal of experimental psychology. Human perception and performance.

[109]  F. Kitterle,et al.  Symmetries and asymmetries in the processing of sinusoidal gratings , 1991 .

[110]  R. Adolphs,et al.  Neural systems behind word and concept retrieval , 2004, Cognition.

[111]  Lynn C. Robertson,et al.  Attention and interference in the processing of global and local information: Effects of unilateral temporal-parietal junction lesions , 1989, Neuropsychologia.

[112]  Jane E. Joseph,et al.  Effects of structural similarity on neural substrates for object recognition , 2003, Cognitive, affective & behavioral neuroscience.

[113]  M. Posner,et al.  Cognitive and emotional influences in anterior cingulate cortex , 2000, Trends in Cognitive Sciences.

[114]  Olaf B. Paulson,et al.  Shape configuration and category-specificity , 2006, Neuropsychologia.

[115]  Cathy J. Price,et al.  Fusiform Activation to Animals is Driven by the Process, Not the Stimulus , 2005, Journal of Cognitive Neuroscience.

[116]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[117]  Richard S. J. Frackowiak,et al.  Where in the brain does visual attention select the forest and the trees? , 1996, Nature.

[118]  Randall J. Frank,et al.  Explaining category-related effects in the retrieval of conceptual and lexical knowledge for concrete entities: operationalization and analysis of factors , 1997, Neuropsychologia.

[119]  R. Job,et al.  Category-specific form-knowledge deficit in a patient with herpes simplex virus encephalitis , 1993 .

[120]  M Poncet,et al.  The role of sensorimotor experience in object recognition. A case of multimodal agnosia. , 1991, Brain : a journal of neurology.

[121]  Glyn W Humphreys,et al.  A CASE SERIES ANALYSIS OF “CATEGORY-SPECIFIC” DEFICITS OF LIVING THINGS:THE HIT ACCOUNT , 2003, Cognitive neuropsychology.

[122]  T. Gale,et al.  Category-Specific Naming and the ‘Visual’ Characteristics of Line Drawn Stimuli , 2002, Cortex.

[123]  P. Coppens,et al.  Category-specific naming effect in non-brain-damaged individuals , 2005, Brain and Language.

[124]  Martha J. Farah,et al.  Category-specificity and modality-specificity in semantic memory , 1989, Neuropsychologia.

[125]  Karl J. Friston,et al.  Voxel-Based Morphometry of Herpes Simplex Encephalitis , 2001, NeuroImage.

[126]  M. M. Meyer,et al.  Can recognotion of living things be selectively impaired? , 1991, Neuropsychologia.

[127]  Kalanit Grill-Spector,et al.  Semantic versus perceptual priming in fusiform cortex , 2001, Trends in Cognitive Sciences.

[128]  G. Humphreys,et al.  A case of integrative visual agnosia. , 1987, Brain : a journal of neurology.

[129]  The Heterogeneity of Category-Specific Semantic Disorders: Evidence from a New Case , 2003, Neurocase.

[130]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[131]  T. Sanocki Interaction of scale and time during object identification. , 2001, Journal of experimental psychology. Human perception and performance.

[132]  R. Kimchi Visual Perceptual Organization: A Microgenetic Analysis , 2003 .

[133]  Glyn W. Humphreys,et al.  Cascade processes in picture identification , 1988 .

[134]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[135]  Emmanuel A Stamatakis,et al.  The Anatomy of Object Processing: The Role of Anteromedial Temporal Cortex , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[136]  A. Chatterjee,et al.  A deficit of intermediate vision: Experimental observations and theoretical implications , 1999 .

[137]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[138]  Glyn W. Humphreys,et al.  A tale of two agnosias: Distinctions between form and integrative agnosia , 2008, Cognitive neuropsychology.

[139]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[140]  R. S. J. Frackowiak,et al.  Hemispheric specialization for global and local processing: the effect of stimulus category , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[141]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .