On the completeness of quantum computation models

The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite "tensorial dimension". Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory. (Extra keywords: quantum programming languages, denotational semantics, universality.)

[1]  Thorsten Altenkirch,et al.  An Algebra of Pure Quantum Programming , 2007, Electron. Notes Theor. Comput. Sci..

[2]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[3]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[4]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[5]  André van Tonder,et al.  A Lambda Calculus for Quantum Computation , 2003, SIAM J. Comput..

[6]  Simon Perdrix Partial Observation of Quantum Turing Machines and a Weaker Well-Formedness Condition , 2011, Electron. Notes Theor. Comput. Sci..

[7]  Nachum Dershowitz,et al.  The Church-Turing Thesis over Arbitrary Domains , 2008, Pillars of Computer Science.

[8]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[9]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[10]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Vincent Nesme,et al.  Unitarity plus causality implies localizability , 2007, J. Comput. Syst. Sci..

[12]  Andr'e van Tonder,et al.  Quantum Computation, Categorical Semantics and Linear Logic , 2003, ArXiv.

[13]  Gilles Dowek,et al.  Linear-algebraic lambda-calculus: higher-order, encodings, and confluence , 2008, RTA.

[14]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[15]  J. V. Tucker,et al.  Effective algebras , 1995, Logic in Computer Science.

[16]  Pablo Arrighi,et al.  Intrinsically universal n-dimensional quantum cellular automata , 2009, J. Comput. Syst. Sci..

[17]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[18]  Richard Montague,et al.  Towards a general theory of computability , 1960, Synthese.

[19]  M. A. Nielsen Computable Functions, Quantum Measurements, and Quantum Dynamics , 1997 .

[20]  Pablo Arrighi,et al.  A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton , 2010, LATA.

[21]  P. Odifreddi Classical recursion theory , 1989 .