Optical transitions of Er3 + in lead-tellurium-germanate glasses

Abstract Optical-absorption, photoluminescence, and up-conversion luminescence were measured for Er 3 + in lead—tellurium— germanate glasses (63− x )GeO 2 · x TeO 2 · 27PbO · 10CaO with x = 0, 10, 20, 30, and 40. Each glass sample contains an extra 0.2 mol% Er 2 O 3 . Judd—Ofelt intensity parameters were determined and used to calculate the radiative transition rates and lifetimes of Er 3 + in glasses with different TeO 2 content. It has been found that the 4 S 3/2 → 4 I 15/2 radiative transition rate and the infrared (800 nm) to green (547 nm) up-conversion efficiency of Er 3 + increase with increasing TeO 2 content. Our results indicate that incorporating TeO 2 up to 40 mol% into a lead—germanate glass network increases the luminescence efficiency due to the increased refractive index and decreased maximum phonon energy of the host glass.

[1]  B. G. Potter,et al.  Synthesis and application of lanthanide-doped materials , 1996 .

[2]  R. Afzal,et al.  Intensity‐dependent upconversion efficiencies of Er3+ ions in heavy‐metal fluoride glass , 1991 .

[3]  W. A. Sibley,et al.  Optical transitions of Er 3 + ions in fluorozirconate glass , 1983 .

[4]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[5]  W. Ryba-Romanowski Effect of temperature and activator concentration on luminescence decay of erbium-doped tellurite glass , 1990 .

[6]  K. Rajnak,et al.  Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+ , 1968 .

[7]  Steven H. Morgan,et al.  Raman spectra and thermal analysis of a new lead–tellurium–germanate glass system , 1997 .

[8]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[9]  W. E. Collins,et al.  Infrared to visible upconversion in Er3+‐doped‐lead‐germanate glass: Effects of Er3+ ion concentration , 1995 .

[10]  Steven H. Morgan,et al.  Host‐dependent optical transitions of Er3+ ions in lead–germanate and lead‐tellurium‐germanate glasses , 1996 .

[11]  R. S. Quimby,et al.  Efficient frequency up-conversion via energy transfer in fluoride glasses , 1987 .

[12]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[13]  Anne C. Tropper,et al.  Fabrication and optical properties of lead‐germanate glasses and a new class of optical fibers doped with Tm3+ , 1993 .

[14]  J. P. van der Ziel,et al.  1.5‐μm infrared excitation of visible luminescent in Y1−xErxF3 and Y1−x−yErxTmyF3 via resonant‐energy transfer , 1986 .

[15]  Renata Reisfeld,et al.  Radiative and non-radiative transition probabilities and quantum yields for excited states of Er3+ in germanate and tellurite glasses , 1974 .

[16]  M. J. Weber,et al.  Probabilities for Radiative and Nonradiative Decay of Er 3 + in La F 3 , 1967 .

[17]  S. Ribeiro,et al.  Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy , 1993 .

[18]  A. F. Fray,et al.  Germanate glasses: Removal of OH absorption bands , 1961 .

[19]  A. F. Fray,et al.  Some infrared transmitting glasses containing germanium dioxide , 1961 .

[20]  M. J. Weber,et al.  Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass , 1977 .

[21]  Douglas H. Blackburn,et al.  Optical properties of Nd3+ in tellurite and phosphotellurite glasses , 1981 .