A modular approach to user-defined symbolic periodicities

Many applications in Artificial Intelligence and Data Bases deal with (domain and/or goal-dependent) temporal patterns that repeat regularly over time (periodicities). Hence the need for formal languages that allow users to define periodicities. Among proposals in the literature, symbolic languages are sets of operators for compositional and incremental definition. We propose a new methodology for designing symbolic languages, based on a preliminary analysis of the required expressiveness. The analysis is guided by a classification of the periodicities according to expressiveness properties that are mutually independent. Each of the properties will be then paired with a language operator such that the addition of that operator to a language adds the capability of defining all periodicities having the corresponding property. A modular family of languages with well-defined expressiveness is the result of this process. Moreover, in this paper we instantiate the general methodology by identifying a specific set of properties which we also use in order to classify the expressiveness of different symbolic approaches in the literature.

[1]  James P. Delgrande,et al.  Characterizing temporal repetition , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[2]  Paolo Terenziani,et al.  A flexible approach to user-defined symbolic granularities in temporal databases , 2005, SAC '05.

[3]  Sushil Jajodia,et al.  Discovering calendar-based temporal association rules , 2003 .

[4]  Claudio Bettini,et al.  Supporting Temporal Reasoning by Mapping Calendar Expressions to Minimal Periodic Sets , 2011, J. Artif. Intell. Res..

[5]  Michael Stonebraker,et al.  Implementing calendars and temporal rules in next generation databases , 1994, Proceedings of 1994 IEEE 10th International Conference on Data Engineering.

[6]  Hans Jürgen Ohlbach The role of labelled partitionings for modelling periodic temporal notions , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[7]  Curtis E. Dyreson,et al.  Integrating multiple calendars using τ Z AMAN , 2007 .

[8]  Sushil Jajodia,et al.  Temporal Databases: Research and Practice , 1998 .

[9]  Paolo Terenziani,et al.  A mathematical framework for the semantics of symbolic languages representing periodic time , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[10]  E. J. F. Primrose The Mathematics of Easter , 1951 .

[11]  Richard T. Snodgrass,et al.  Reconciling Point-based and Interval-based Semantics in Temporal Relational Databases : A Proper Treatment of the Telic / Atelic Distinction , 2001 .

[12]  Massimo Franceschet,et al.  Representing and Reasoning about Temporal Granularities , 2004, J. Log. Comput..

[13]  Jan Chomicki,et al.  Temporal deductive databases and infinite objects , 1988, PODS.

[14]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[15]  Martín Abadi,et al.  Temporal Logic Programming , 1989, J. Symb. Comput..

[16]  Claudio Bettini,et al.  Symbolic representation of user-defined time granularities , 2004, Annals of Mathematics and Artificial Intelligence.

[17]  Pierre Wolper,et al.  Handling infinite temporal data , 1990, PODS.

[18]  Jan Chomicki,et al.  Datalog with Integer Periodicity Constraints , 1994, J. Log. Program..

[19]  Gérard Ligozat,et al.  On Generalized Interval Calculi , 1991, AAAI.

[20]  Richard T. Snodgrass,et al.  The TSQL2 Temporal Query Language , 1995 .

[21]  James P. Delgrande,et al.  Expressing Time Intervals and Repetition Within a Formalization of Calendars , 1998, Comput. Intell..

[22]  Angelo Montanari,et al.  Metric and Layered Temporal Logic for Time Granularity , 1996, ILLC dissertation series.

[23]  Sushil Jajodia,et al.  An Algebraic Representation of Calendars , 2004, Annals of Mathematics and Artificial Intelligence.

[24]  Paolo Terenziani,et al.  Integrating Calendar Dates and Qualitative Temporal Constraints in the Treatment of Periodic Events , 1997, IEEE Trans. Knowl. Data Eng..

[25]  Esteban Zimányi,et al.  A conceptual model for temporal data warehouses and its transformation to the ER and the object-relational models , 2008, Data Knowl. Eng..

[26]  M. Baudinet,et al.  Temporal Databases: Beyond Finite Extensions (position paper) , 1993 .

[27]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[28]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[29]  Angelo Montanari,et al.  Temporalized logics and automata for time granularity , 2003, Theory and Practice of Logic Programming.

[30]  Angelo Montanari,et al.  Branching within Time: An Expressively Complete and Elementarily Decidable Temporal Logic for Time Granularity , 2003 .

[31]  David Forster,et al.  A Representation for Collections of Temporal Intervals , 1986, AAAI.

[32]  Lina Khatib,et al.  DOMAIN‐INDEPENDENT TEMPORAL REASONING WITH RECURRING EVENTS , 1996, Comput. Intell..

[33]  Lina Khatib,et al.  Representation and Reasoning with Multi-Point Events , 2000, Constraints.

[34]  Max J. Egenhofer Temporal Relations of Intervals with a Gap , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[35]  James Clifford,et al.  On Periodicity in Temporal Databases , 1995, Inf. Syst..

[36]  Jean-François Condotta,et al.  Ultimately Periodic Simple Temporal Problems (UPSTPs) , 2006, Thirteenth International Symposium on Temporal Representation and Reasoning (TIME'06).

[37]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[38]  Johan van Benthem,et al.  The Logic of Time , 1983 .

[39]  Ugo Dal Lago,et al.  On the Equivalence of Automaton-Based Representations of Time Granularities , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[40]  Elisa Bertino,et al.  An access control model supporting periodicity constraints and temporal reasoning , 1998, TODS.

[41]  Pierre Wolper,et al.  Handling Infinite Temporal Data , 1995, J. Comput. Syst. Sci..

[42]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[43]  Sushil Jajodia,et al.  Time Granularities in Databases, Data Mining, and Temporal Reasoning , 2000, Springer Berlin Heidelberg.

[44]  Paolo Terenziani,et al.  A lattice of classes of user-defined symbolic periodicities , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[45]  Jérôme Euzenat An Algebraic Approach to Granularity in Qualitative Time and Space Representation , 1995, IJCAI.

[46]  Paolo Terenziani,et al.  Orthogonal Operators for User-Defined Symbolic Periodicities , 2004, AIMSA.

[47]  Jan Chomicki,et al.  Finite representation of infinite query answers , 1993, TODS.

[48]  Paolo Terenziani,et al.  Symbolic User-Defined Periodicity in Temporal Relational Databases , 2003, IEEE Trans. Knowl. Data Eng..

[49]  Peter B. Ladkin,et al.  Primitives and Units for Time Specification , 1986, AAAI.