Rhodopsin: insights from recent structural studies.

The recent report of the crystal structure of rhodopsin provides insights concerning structure-activity relationships in visual pigments and related G protein-coupled receptors (GPCRs). The seven transmembrane helices of rhodopsin are interrupted or kinked at multiple sites. An extensive network of interhelical interactions stabilizes the ground state of the receptor. The ligand-binding pocket of rhodopsin is remarkably compact, and several chromophore-protein interactions were not predicted from mutagenesis or spectroscopic studies. The helix movement model of receptor activation, which likely applies to all GPCRs of the rhodopsin family, is supported by several structural elements that suggest how light-induced conformational changes in the ligand-binding pocket are transmitted to the cytoplasmic surface. The cytoplasmic domain of the receptor includes a helical domain extending from the seventh transmembrane segment parallel to the bilayer surface. The cytoplasmic surface appears to be approximately large enough to bind to the transducin heterotrimer in a one-to-one complex. The structural basis for several unique biophysical properties of rhodopsin, including its extremely low dark noise level and high quantum efficiency, can now be addressed using a combination of structural biology and various spectroscopic methods. Future high-resolution structural studies of rhodopsin and other GPCRs will form the basis to elucidate the detailed molecular mechanism of GPCR-mediated signal transduction.

[1]  T. Sakmar Rhodopsin: a prototypical G protein-coupled receptor. , 1998, Progress in nucleic acid research and molecular biology.

[2]  David J. Baylor,et al.  Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant , 1995, Science.

[3]  K. Fahmy,et al.  Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. , 1994, Biochemistry.

[4]  M. Sheves,et al.  FTIR evidence of an altered chromophore-protein interaction in the artificial visual pigment cis-5,6-dihydroisorhodopsin and its photoproducts BSI, lumirhodopsin, and metarhodopsin-I , 1991 .

[5]  S. Kaushal,et al.  Structure and function in rhodopsin: the role of asparagine-linked glycosylation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  N. Artemyev,et al.  Roles of the transducin alpha-subunit alpha4-helix/alpha4-beta6 loop in the receptor and effector interactions. , 1999, The Journal of biological chemistry.

[7]  J. Klein-Seetharaman,et al.  Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. , 1999, Biochemistry.

[8]  B. Conklin,et al.  Substitution of three amino acids switches receptor specificity of Gqα to that of Giα , 1993, Nature.

[9]  K. Hofmann,et al.  Maximal Rate and Nucleotide Dependence of Rhodopsin-catalyzed Transducin Activation , 2001, The Journal of Biological Chemistry.

[10]  Ovchinnikov YuA Rhodopsin and bacteriorhodopsin: structure-function relationships. , 1982, FEBS letters.

[11]  S. Gravina,et al.  Reconstitution of the vertebrate visual cascade using recombinant heterotrimeric transducin purified from Sf9 cells. , 2000, Protein expression and purification.

[12]  S. Karnik,et al.  Modulation of GDP Release from Transducin by the Conserved Glu134-Arg135 Sequence in Rhodopsin* , 1996, The Journal of Biological Chemistry.

[13]  H. Khorana,et al.  Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. , 1990, The Journal of biological chemistry.

[14]  J. Klein-Seetharaman,et al.  Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Lamb,et al.  Gain and kinetics of activation in the G-protein cascade of phototransduction. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. M. Griffiths,et al.  Structural investigation of the active site in bacteriorhodopsin: geometric constraints on the roles of Asp-85 and Asp-212 in the proton-pumping mechanism from solid state NMR. , 2000, Biochemistry.

[17]  M. Struthers,et al.  G protein-coupled receptor activation: analysis of a highly constrained, "straitjacketed" rhodopsin. , 2000, Biochemistry.

[18]  D. Oprian,et al.  State-dependent disulfide cross-linking in rhodopsin. , 1999, Biochemistry.

[19]  M. Caron,et al.  Light-dependent phosphorylation of rhodopsin by β-adrenergic receptor kinase , 1986, Nature.

[20]  J. Baldwin,et al.  An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. , 1997, Journal of molecular biology.

[21]  G. Johnson,et al.  Transducin inhibition of light-dependent rhodopsin phosphorylation: evidence for beta gamma subunit interaction with rhodopsin. , 1988, Molecular pharmacology.

[22]  T. Sakmar,et al.  The Function of Interdomain Interactions in Controlling Nucleotide Exchange Rates in Transducin* , 2001, The Journal of Biological Chemistry.

[23]  J. Stankova,et al.  Structural and Functional Requirements for Agonist-induced Internalization of the Human Platelet-activating Factor Receptor* , 1997, The Journal of Biological Chemistry.

[24]  G R Marshall,et al.  Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Du,et al.  Sequence divergence analysis for the prediction of seven-helix membrane protein structures: II. A 3-D model of human rhodopsin. , 1994, Protein engineering.

[26]  J. Nathans Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. , 1990, Biochemistry.

[27]  T. Blundell,et al.  Phosducin induces a structural change in transducin beta gamma. , 1998, Structure.

[28]  Y. Ovchinnikov Rhodopsin and bacteriorhodopsin: structure—function relationships , 1982 .

[29]  H. Kandori Role of internal water molecules in bacteriorhodopsin. , 2000, Biochimica et biophysica acta.

[30]  H. Kamikubo,et al.  Structures of photointermediates and their implications for the proton pump mechanism. , 2000, Biochimica et biophysica acta.

[31]  M. Chabre Trigger and amplification mechanisms in visual phototransduction. , 1985, Annual review of biophysics and biophysical chemistry.

[32]  D. Kliger,et al.  Spectral and Kinetic Characterization of Visual Pigment Photointermediates , 1995 .

[33]  H. Khorana,et al.  Role of the intradiscal domain in rhodopsin assembly and function. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Rothschild,et al.  Probing intramolecular orientations in rhodopsin and metarhodopsin II by polarized infrared difference spectroscopy. , 1999, Biochemistry.

[35]  Freeman J. Dyson,et al.  The same and not the same , 1995 .

[36]  D. Oprian,et al.  Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness , 1994, Nature.

[37]  P B Sigler,et al.  The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. , 1994, Nature.

[38]  R A Mathies,et al.  Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. , 1987, Biochemistry.

[39]  G. Varo,et al.  The role of water in the extracellular half channel of bacteriorhodopsin. , 1997, Biophysical journal.

[40]  P. Sigler,et al.  A Model for Arrestin’s Regulation: The 2.8 Å Crystal Structure of Visual Arrestin , 1999, Cell.

[41]  Gebhard F. X. Schertler,et al.  Arrangement of rhodopsin transmembrane α-helices , 1997, Nature.

[42]  H. Khorana,et al.  Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: Expression of 15 N-lysine- and 13 C-glycine-labeled opsin in a stable cell line (HEK293S cellsyG protein-coupled receptorysignal transductiony11-cis retinalyvisual pigment) , 1999 .

[43]  T. Sakmar,et al.  Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same. , 2002, Current opinion in cell biology.

[44]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[45]  K. Fahmy,et al.  Properties and Photoactivity of Rhodopsin Mutants , 1995 .

[46]  T. Sakmar,et al.  Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. , 1992, The Journal of biological chemistry.

[47]  K. Fahmy,et al.  Structural determinants of active state conformation of rhodopsin: molecular biophysics approaches. , 2000, Methods in enzymology.

[48]  E. Landau,et al.  Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: towards resolving a revolving photocycle. , 2000, Biochimica et biophysica acta.

[49]  Joanne I. Yeh,et al.  Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. , 1995, Science.

[50]  H. Khorana,et al.  Structural features of the C-terminal domain of bovine rhodopsin: a site-directed spin-labeling study. , 1999, Biochemistry.

[51]  Y. Fukada,et al.  Lipid modification at the N terminus of photoreceptor G-protein α-subunit , 1992, Nature.

[52]  D C Teller,et al.  Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). , 2001, Biochemistry.

[53]  K. Palczewski,et al.  Sequential phosphorylation of rhodopsin at multiple sites. , 1993, Biochemistry.

[54]  J. Klein-Seetharaman,et al.  Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. , 1999, Biochemistry.

[55]  R. Crouch,et al.  Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin. , 1993, Biochemistry.

[56]  T. Sakmar,et al.  Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II 1 , 1998, FEBS letters.

[57]  N. Gautam,et al.  Efficient Interaction with a Receptor Requires a Specific Type of Prenyl Group on the G Protein γ Subunit (*) , 1995, The Journal of Biological Chemistry.

[58]  L. P. Murray,et al.  Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Rando,et al.  Polyenes and vision. , 1996, Chemistry & biology.

[60]  H. Khorana,et al.  Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Palczewski,et al.  Mechanisms of Opsin Activation* , 1996, The Journal of Biological Chemistry.

[62]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[63]  H. D. de Groot,et al.  Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein receptor target in the natural membrane environment: electronic structure of the retinylidene chromophore in rhodopsin. , 2001, Biochemistry.

[64]  J. Schaefer,et al.  Inter-tryptophan distances in rat cellular retinol binding protein II by solid-state NMR. , 1993, Biochemistry.

[65]  D. Oprian,et al.  Constitutively active mutants of rhodopsin , 1992, Neuron.

[66]  T. Sakmar,et al.  Rhodopsin: structural basis of molecular physiology. , 2001, Physiological reviews.

[67]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. Kochendoerfer,et al.  Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin. , 1996, Biochemistry.

[69]  H. Hamm,et al.  GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF−4 , 1994, Nature.

[70]  K D Ridge,et al.  Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  T. Sakmar,et al.  Colour tuning mechanisms of visual pigments. , 1999, Novartis Foundation symposium.

[72]  D. Baylor,et al.  Photoreceptor signals and vision. Proctor lecture. , 1987, Investigative ophthalmology & visual science.

[73]  D. Oprian,et al.  Identification of the Cl(-)-binding site in the human red and green color vision pigments. , 1993, Biochemistry.

[74]  P. Ormos,et al.  Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin , 2000, Nature.

[75]  Kenneth J. Rothschild,et al.  FTIR difference spectroscopy of bacteriorhodopsin: Toward a molecular model , 1992, Journal of bioenergetics and biomembranes.

[76]  Henry R. Bourne,et al.  Lipid Modifications of Trimeric G Proteins (*) , 1995, The Journal of Biological Chemistry.

[77]  D. Farrens,et al.  Conformational Changes in Rhodopsin , 1999, The Journal of Biological Chemistry.

[78]  K. Nakanishi,et al.  Synthetic retinals: convenient probes of rhodopsin and visual transduction process. , 2000, Methods in enzymology.

[79]  S. W. Lin,et al.  Analysis of functional microdomains of rhodopsin. , 2000, Methods in enzymology.

[80]  H. Hamm,et al.  Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. , 1994, Nature.

[81]  C Altenbach,et al.  Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. , 1999, Biochemistry.

[82]  K. Fahmy,et al.  Transducin-dependent protonation of glutamic acid 134 in rhodopsin. , 2000, Biochemistry.

[83]  T. Sakmar,et al.  Characterization of Rhodopsin Mutants That Bind Transducin but Fail to Induce GTP Nucleotide Uptake , 1995, The Journal of Biological Chemistry.

[84]  H. Kandori,et al.  Water and peptide backbone structure in the active center of bovine rhodopsin. , 1997, Biochemistry.

[85]  K. Fahmy,et al.  Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. Cerione,et al.  Rhodopsin/transducin interactions. II. Influence of the transducin-beta gamma subunit complex on the coupling of the transducin-alpha subunit to rhodopsin. , 1992, The Journal of biological chemistry.

[87]  M. A. Wilson,et al.  The 1.0 A crystal structure of Ca(2+)-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. , 2000, Journal of molecular biology.

[88]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[89]  J. Klein-Seetharaman,et al.  Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[90]  P. Hargrave,et al.  [31] Retinyl peptide isolation and characterization , 1982 .

[91]  H. Khorana,et al.  Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. , 1992, The Journal of biological chemistry.

[92]  M. Struthers,et al.  Tertiary interactions between the fifth and sixth transmembrane segments of rhodopsin. , 1999, Biochemistry.

[93]  J. Klein-Seetharaman,et al.  Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation. , 1999, Biochemistry.

[94]  T. Sakmar,et al.  Functional Interaction of Transmembrane Helices 3 and 6 in Rhodopsin , 1996, The Journal of Biological Chemistry.

[95]  Richard Henderson,et al.  Molecular mechanism of vectorial proton translocation by bacteriorhodopsin , 2000, Nature.

[96]  Kate S. Carroll,et al.  Mechanisms of Spectral Tuning in Blue Cone Visual Pigments , 1998, The Journal of Biological Chemistry.

[97]  R. Neubig,et al.  Lack of association of G-protein beta 2- and gamma 2-subunit N-terminal fragments provides evidence against the coiled-coil model of subunit-beta gamma assembly. , 1995, The Biochemical journal.

[98]  K. Fahmy,et al.  Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant. , 1993, Biochemistry.

[99]  U. Gether Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. , 2000, Endocrine reviews.

[100]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[101]  H. Philippe,et al.  How color visual pigments are tuned , 1999 .

[102]  K. Gerwert,et al.  Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition. , 1997, Biophysical journal.

[103]  J. Ballesteros,et al.  Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. , 2001, Molecular pharmacology.

[104]  D. Baylor,et al.  How photons start vision. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[105]  J. Hajdu,et al.  Femtosecond time resolution in x-ray diffraction experiments. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[106]  J. Wess,et al.  Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[107]  H. Khorana,et al.  Structure and function in rhodopsin: destabilization of rhodopsin by the binding of an antibody at the N-terminal segment provides support for involvement of the latter in an intradiscal tertiary structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Heidi E. Hamm,et al.  The 2.2 Å crystal structure of transducin-α complexed with GTPγS , 1993, Nature.

[109]  S. O. Smith,et al.  Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. , 1998, Biochemistry.

[110]  G. Wald The molecular basis of visual excitation. , 1968, Nature.

[111]  A. Terakita,et al.  Distinct Roles of the Second and Third Cytoplasmic Loops of Bovine Rhodopsin in G Protein Activation* , 2000, The Journal of Biological Chemistry.

[112]  Y. Fukada,et al.  Specific isoprenyl group linked to transducin gamma-subunit is a determinant of its unique signaling properties among G-proteins. , 1998, Biochemistry.

[113]  D. Oprian,et al.  STATE-DEPENDENT DISULFIDE CROSS-LINKING IN RHODOPSIN , 1999 .

[114]  D. Oprian,et al.  Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. , 1992, Biochemistry.

[115]  D. Oprian,et al.  Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore , 1991, Science.

[116]  K. Rothschild,et al.  Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. , 1993, Biochemistry.

[117]  H. D. de Groot,et al.  Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. , 1999, Biochemistry.

[118]  S. Karnik,et al.  Transducin-α C-terminal Peptide Binding Site Consists of C-D and E-F Loops of Rhodopsin* , 1997, The Journal of Biological Chemistry.

[119]  T. Sakmar,et al.  Spectroscopic evidence for interaction between transmembrane helices 3 and 5 in rhodopsin. , 1998, Biochemistry.

[120]  J. Nathans,et al.  Insertional mutagenesis as a probe of rhodopsin's topography, stability, and activity. , 1994, The Journal of biological chemistry.

[121]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[122]  T. Sakmar,et al.  [9] Analysis of functional microdomains of rhodopsin , 2000 .

[123]  D. Oprian,et al.  Effect of carboxylic acid side chains on the absorption maximum of visual pigments. , 1989, Science.

[124]  H. Khorana,et al.  Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[125]  S. O. Smith,et al.  Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[126]  A. Watts,et al.  Photoreceptor rhodopsin: structural and conformational study of its chromophore 11‐cis retinal in oriented membranes by deuterium solid state NMR , 1998, FEBS letters.

[127]  K. Fahmy,et al.  Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. , 1993, Biochemistry.

[128]  H. Bourne,et al.  Transducin‐alpha C‐terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. , 1995, The EMBO journal.

[129]  L. Stryer,et al.  Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[130]  B. K. Fung Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. , 1983, The Journal of biological chemistry.

[131]  B. K. Fung,et al.  Characterization of transducin from bovine retinal rod outer segments. II. Evidence for distinct binding sites and conformational changes revealed by limited proteolysis with trypsin. , 1983, The Journal of biological chemistry.

[132]  H. Khorana,et al.  Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. , 1991, The Journal of biological chemistry.

[133]  H. Khorana,et al.  Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of 11-cis-retinal. , 1990, The Journal of biological chemistry.

[134]  G. Büldt,et al.  X-ray crystal structure of arrestin from bovine rod outer segments , 1998, Nature.

[135]  M. Gerstein,et al.  Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. , 1993, The EMBO journal.

[136]  Y. Fukada,et al.  Lipid modification at the N terminus of photoreceptor G-protein alpha-subunit. , 1992, Nature.

[137]  H. Hamm,et al.  Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. , 1996, Nature.

[138]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2000, Science.

[139]  Tom L. Blundell,et al.  Phosducin induces a structural change in transducin βγ , 1998 .

[140]  R Henderson,et al.  An atomic model for the structure of bacteriorhodopsin. , 1990, Biochemical Society transactions.

[141]  R. Cerione,et al.  Rhodopsin/transducin interactions. I. Characterization of the binding of the transducin-beta gamma subunit complex to rhodopsin using fluorescence spectroscopy. , 1992, The Journal of biological chemistry.

[142]  J. Klein-Seetharaman,et al.  NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[143]  E. Weiss,et al.  The Effect of Carboxyl-terminal Mutagenesis of G on Rhodopsin and Guanine Nucleotide Binding (*) , 1995, The Journal of Biological Chemistry.

[144]  K. Hofmann,et al.  Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[145]  H. Hamm,et al.  The 2.0 Å crystal structure of a heterotrimeric G protein , 1996, Nature.

[146]  P. Argos,et al.  The structure of bovine rhodopsin , 2004, Biophysics of structure and mechanism.

[147]  A. Dizhoor,et al.  Three-dimensional Structure of Guanylyl Cyclase Activating Protein-2, a Calcium-sensitive Modulator of Photoreceptor Guanylyl Cyclases* , 1999, The Journal of Biological Chemistry.

[148]  Heidi E. Hamm,et al.  Structural determinants for activation of the α-subunit of a heterotrimeric G protein , 1994, Nature.

[149]  T. Sakmar,et al.  The Effects of Amino Acid Replacements of Glycine 121 on Transmembrane Helix 3 of Rhodopsin* , 1996, The Journal of Biological Chemistry.

[150]  A. Scheer,et al.  S-prenylated cysteine analogues inhibit receptor-mediated G protein activation in native human granulocyte and reconstituted bovine retinal rod outer segment membranes. , 1995, Biochemistry.

[151]  J. Nathans,et al.  Isolation and nucleotide sequence of the gene encoding human rhodopsin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[152]  A. Naito,et al.  Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. , 2000, Biochimica et biophysica acta.

[153]  A. Ghalayini,et al.  Tyrosine Phosphorylation of the α Subunit of Transducin and Its Association with Src in Photoreceptor Rod Outer Segments , 2000 .

[154]  T. Kouyama,et al.  Highly Selective Separation of Rhodopsin from Bovine Rod Outer Segment Membranes Using Combination of Divalent Cation and Alkyl(thio)glucoside , 1998, Photochemistry and photobiology.

[155]  R. Glaeser,et al.  Chemical and physical evidence for multiple functional steps comprising the M state of the bacteriorhodopsin photocycle. , 2000, Biochimica et biophysica acta.

[156]  O. Lichtarge,et al.  Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F , 1996, Nature.

[157]  H Luecke,et al.  Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. , 1999, Science.

[158]  T. Smith,et al.  Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit. , 1996, Biochemistry.

[159]  D. Oprian,et al.  Activating mutations of rhodopsin and other G protein-coupled receptors. , 1996, Annual Review of Biophysics and Biomolecular Structure.

[160]  H. Luecke Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. , 2000, Biochimica et biophysica acta.

[161]  Temple F. Smith,et al.  The ancient regulatory-protein family of WD-repeat proteins , 1994, Nature.

[162]  E. Meng,et al.  Receptor activation: what does the rhodopsin structure tell us? , 2001, Trends in pharmacological sciences.

[163]  K. Fahmy,et al.  Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. , 1996, Biochemistry.

[164]  C. Rafferty,et al.  Tryptophan in bovine rhodopsin: its content, spectral properties and environment. , 1980, Biochemistry.

[165]  S R Sprang,et al.  G protein mechanisms: insights from structural analysis. , 1997, Annual review of biochemistry.

[166]  Lubert Stryer,et al.  Three-dimensional structure of recoverin, a calcium sensor in vision , 1993, Cell.

[167]  K. Nakanishi,et al.  The Location of the Chromophore in Rhodopsin - A Photoaffinity Study , 1994 .

[168]  K. Nakanishi,et al.  Movement of retinal along the visual transduction path. , 2000, Science.

[169]  H. Khorana,et al.  Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain. , 1994, The Journal of biological chemistry.

[170]  H. Khorana,et al.  Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix. , 1992, Biochemistry.

[171]  H. Khorana,et al.  Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[172]  M. Caron,et al.  Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. , 1992, The Journal of biological chemistry.

[173]  C. Cowan,et al.  RGS9, a GTPase Accelerator for Phototransduction , 1998, Neuron.

[174]  D. Kliger,et al.  Absorption spectroscopy in studies of visual pigments: spectral and kinetic characterization of intermediates. , 2000, Methods in enzymology.

[175]  J. Nathans,et al.  Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin , 1983, Cell.

[176]  H. Hamm,et al.  Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. , 1988, Science.

[177]  P. Sigler,et al.  Structural aspects of heterotrimeric G-protein signaling. , 1997, Current opinion in biotechnology.

[178]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[179]  D. Sandström,et al.  Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR , 2000, Journal of biomolecular NMR.

[180]  Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential. , 1999, Biochemistry.

[181]  R. Birge,et al.  Conformation and orientation of the retinyl chromophore in rhodopsin: a critical evaluation of recent NMR data on the basis of theoretical calculations results in a minimum energy structure consistent with all experimental data. , 2001, Biochemistry.

[182]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[183]  J. Baldwin,et al.  Arrangement of rhodopsin transmembrane alpha-helices. , 1997, Nature.

[184]  M. Caron,et al.  Light-dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase. , 1986, Nature.

[185]  P B Sigler,et al.  Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. , 1996, Cell.

[186]  K. Palczewski,et al.  X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. , 2000, Journal of structural biology.

[187]  K. Fahmy,et al.  Photoactivated state of rhodopsin and how it can form. , 1995, Biophysical chemistry.

[188]  S. O. Smith,et al.  NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. , 1995, Biochemistry.

[189]  H. Sass,et al.  Water and bacteriorhodopsin: structure, dynamics, and function. , 2000, Biochimica et biophysica acta.

[190]  Thomas Earnest,et al.  Automation of X-ray crystallography , 2000, Nature Structural Biology.

[191]  P. Hargrave,et al.  Phosphorylation sites in bovine rhodopsin. , 1993, Biochemistry.

[192]  Andrew Bohm,et al.  Crystal Structure at 2.4 Å Resolution of the Complex of Transducin βγ and Its Regulator, Phosducin , 1996, Cell.

[193]  F. Siebert Application of FTIR Spectroscopy to the Investigation of Dark Structures and Photoreactions of Visual Pigments , 1995 .

[194]  D. Kliger,et al.  Effects of pH on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. , 1998, Biochemistry.

[195]  R. Rando,et al.  Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[196]  R. Henderson,et al.  Protein conformational changes in the bacteriorhodopsin photocycle. , 1999, Journal of molecular biology.

[197]  Y. Koutalos,et al.  A Resonance Raman Study Of the C=C Stretch Modes in Bovine and Octopus Visual Pigments with Isotopically Labeled Retinal Chromophores , 1997, Photochemistry and photobiology.

[198]  L. Stryer Molecular basis of visual excitation. , 1988, Cold Spring Harbor symposia on quantitative biology.

[199]  N. Verdaguer,et al.  Ca(2+) bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine. , 1999, The EMBO journal.

[200]  H. Khorana,et al.  Formation of the meta II photointermediate is accompanied by conformational changes in the cytoplasmic surface of rhodopsin. , 1993, Biochemistry.

[201]  T. Sakmar,et al.  Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study. , 2000, Biophysical journal.

[202]  J. Herzfeld,et al.  NMR probes of vectoriality in the proton-motive photocycle of bacteriorhodopsin: evidence for an 'electrostatic steering' mechanism. , 2000, Biochimica et biophysica acta.

[203]  C. Strader,et al.  Structure and function of G protein-coupled receptors. , 1994, Annual review of biochemistry.

[204]  R. Neubig,et al.  Receptor and Membrane Interaction Sites on G , 1996, The Journal of Biological Chemistry.

[205]  K. Foster,et al.  Transducin Activation by the Bovine Opsin Apoprotein (*) , 1995, The Journal of Biological Chemistry.

[206]  P. Sigler,et al.  The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation. , 1999, Cell.

[207]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[208]  Wei He,et al.  Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å , 2001, Nature.

[209]  L. Dekker,et al.  Crystal structure of the C2 domain from protein kinase C-delta. , 1998, Structure.

[210]  U. Kragl,et al.  Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin. , 1999, Biochemistry.

[211]  S. Sprang,et al.  Structure of the protein kinase Cbeta phospholipid-binding C2 domain complexed with Ca2+. , 1998, Structure.

[212]  K. Hideg,et al.  Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. , 1993, Science.

[213]  T. Sakmar,et al.  Rapid Activation of Transducin by Mutations Distant from the Nucleotide-binding Site , 2001, The Journal of Biological Chemistry.

[214]  J. Beach,et al.  Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin. , 1991, Biochemistry.

[215]  Andrew Bohm,et al.  Crystal structure of a GA protein βγdimer at 2.1 Å resolution , 1996, Nature.

[216]  N. Verdaguer,et al.  Ca2+ bridges the C2 membrane‐binding domain of protein kinase Cα directly to phosphatidylserine , 1999 .

[217]  B. Conklin,et al.  Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. , 1993, Nature.

[218]  H. Bourne,et al.  How receptors talk to trimeric G proteins. , 1997, Current opinion in cell biology.

[219]  H. Khorana,et al.  Rhodopsin mutants that bind but fail to activate transducin. , 1990, Science.

[220]  S. W. Lin,et al.  Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. , 1996, Biochemistry.

[221]  M. Sheves,et al.  Interactions of the beta-ionone ring with the protein in the visual pigment rhodopsin control the activation mechanism. An FTIR and fluorescence study on artificial vertebrate rhodopsins. , 1994, Biochemistry.

[222]  T. Sakmar,et al.  The Amino Terminus of the Fourth Cytoplasmic Loop of Rhodopsin Modulates Rhodopsin-Transducin Interaction* , 2000, The Journal of Biological Chemistry.

[223]  K. Palczewski,et al.  Structural and Enzymatic Aspects of Rhodopsin Phosphorylation (*) , 1996, The Journal of Biological Chemistry.

[224]  H. G. Khorana,et al.  Light-stable rhodopsin. II. An opsin mutant (TRP-265----Phe) and a retinal analog with a nonisomerizable 11-cis configuration form a photostable chromophore. , 1992, The Journal of biological chemistry.

[225]  D. Papermaster Preparation of retinal rod outer segments. , 1982, Methods in enzymology.

[226]  M. Tsuda,et al.  A study on the mechanism of the proton transport in bacteriorhodopsin: the importance of the water molecule. , 2000, Biophysical journal.

[227]  L. Stryer Visual excitation and recovery. , 1991, The Journal of biological chemistry.

[228]  K. Fahmy,et al.  A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. , 1994, The Journal of biological chemistry.

[229]  A. Watts,et al.  Observations of light-induced structural changes of retinal within rhodopsin , 2000, Nature.

[230]  D. Baylor,et al.  Thermal activation of the visual transduction mechanism in retinal rods , 1979, Nature.

[231]  J. Lanyi,et al.  Local and distant protein structural changes on photoisomerization of the retinal in bacteriorhodopsin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[232]  C Menzel,et al.  Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. , 1999, Structure.

[233]  Brian A. Hemmings,et al.  The Structure of the Protein Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs , 1999, Cell.

[234]  D. Oprian,et al.  The ligand-binding domain of rhodopsin and other G protein-linked receptors , 1992, Journal of bioenergetics and biomembranes.

[235]  N. Gautam,et al.  A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling. , 1994, The Journal of biological chemistry.

[236]  D. Oprian,et al.  Tertiary interactions between transmembrane segments 3 and 5 near the cytoplasmic side of rhodopsin. , 1999, Biochemistry.

[237]  R A Mathies,et al.  Vibrationally coherent photochemistry in the femtosecond primary event of vision. , 1994, Science.

[238]  H. Bourne,et al.  G-protein diseases furnish a model for the turn-on switch , 1998, Nature.

[239]  Denis A. Baylor,et al.  The membrane current of single rod outer segments. , 1979 .

[240]  P. Henklein,et al.  Mutation of the Fourth Cytoplasmic Loop of Rhodopsin Affects Binding of Transducin and Peptides Derived from the Carboxyl-terminal Sequences of Transducin α and γ Subunits* , 2000, The Journal of Biological Chemistry.

[241]  J. Breton,et al.  ORIENTATION OF AROMATIC RESIDUES IN RHODOPSIN. ROTATION OF ONE TRYPTOPHAN UPON THE META I→META II TRANSITION AFTER ILLUMINATION , 1979, Photochemistry and photobiology.

[242]  W. C. Probst,et al.  Sequence alignment of the G-protein coupled receptor superfamily. , 1992, DNA and cell biology.

[243]  P. Chardin,et al.  Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. , 1993, The EMBO journal.