Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium

We present a quantitative model for the infrared emission from dust in the diffuse interstellar medium. The model consists of a mixture of amorphous silicate grains and carbonaceous grains, each with a wide size distribution ranging from molecules containing tens of atoms to large grains ≳1 μm in diameter. We assume that the carbonaceous grains have properties like polycyclic aromatic hydrocarbons (PAHs) at very small sizes and graphitic properties for radii a ≳ 50 Å. On the basis of recent laboratory studies and guided by astronomical observations, we propose "astronomical" absorption cross sections for use in modeling neutral and ionized PAHs from the far-ultraviolet to the far-infrared. We also propose modifications to the far-infrared emissivity of "astronomical silicate." We calculate energy distribution functions for small grains undergoing "temperature spikes" caused by stochastic absorption of starlight photons using realistic heat capacities and optical properties. Using a grain-size distribution consistent with the observed interstellar extinction, we are able to reproduce the near-IR to submillimeter emission spectrum of the diffuse interstellar medium, including the PAH emission features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm. The model is compared with the observed emission at high Galactic latitudes as well as in the Galactic plane, as measured by the COBE/DIRBE, COBE/FIRAS, IRTS/MIRS, and IRTS/NIRS instruments. The model has 60 × 10-6 of C (relative to H) locked up in PAHs, with 45 × 10-6 of C in a component peaking at ~6 Å (NC ≈ 100 carbon atoms) to account for the PAH emission features and with 15 × 10-6 of C in a component peaking at ~50 Å to account for the 60 μm flux. The total infrared emission is in excellent agreement with COBE/DIRBE observations at high Galactic latitudes, just as the albedo for our grain model is in accord with observations of the diffuse Galactic light. The aromatic absorption features at 3.3 and 6.2 μm predicted by our dust model are consistent with observations. We calculate infrared emission spectra for our dust model heated by a range of starlight intensities, from 0.3 to 104 times the local interstellar radiation field, and we tabulate the intensities integrated over the SIRTF/IRAC and MIPS bands. We also provide dust opacities tabulated from the extreme-ultraviolet to submillimeter wavelengths.

[1]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[2]  B. Draine,et al.  On Ultrasmall Silicate Grains in the Diffuse Interstellar Medium , 2000, astro-ph/0012147.

[3]  B. Draine,et al.  Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains , 2000, astro-ph/0011318.

[4]  J. Weingartner,et al.  Forces on Dust Grains Exposed to Anisotropic Interstellar Radiation Fields , 2000, astro-ph/0010117.

[5]  T. Nakagawa,et al.  Unidentified Infrared Emission Bands in the Diffuse Interstellar Medium , 2000, astro-ph/0008335.

[6]  Thanu Padmanabhan,et al.  Stars and stellar systems , 2001 .

[7]  E. Peeters,et al.  The C-H out-of-plain bending modes of PAH molecules in astrophysical environments , 2001, astro-ph/0103035.

[8]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[9]  L. Rickard,et al.  Infrared Properties of Molecular Cirrus. II. Cloud-to-Cloud Variations in Graphite and Polycyclic Aromatic Hydrocarbon Content , 2000 .

[10]  C. Bauschlicher,et al.  Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions. 5. PAHs Incorporating a Cyclopentadienyl Ring † , 2000 .

[11]  D. Lutz,et al.  The Composition and Distribution of Dust along the Line of Sight toward the Galactic Center , 2000, astro-ph/0002421.

[12]  K. Sellgren,et al.  Infrared Space Observatory Mid-Infrared Spectra of Reflection Nebulae , 2000 .

[13]  J. Greenberg,et al.  Ultraviolet Photoprocessing of Interstellar Dust Mantles as a Source of Polycyclic Aromatic Hydrocarbons and Other Conjugated Molecules , 2000, The Astrophysical journal.

[14]  G. Helou,et al.  The Mid-Infrared Spectra of Normal Galaxies , 2000, The Astrophysical journal.

[15]  E. V. van Dishoeck Astrochemistry: From Molecular Clouds to Planetary Systems: IAU Symposium 197 , 2000 .

[16]  E. Dishoeck,et al.  Astrochemistry: From Molecular Clouds to Planetary Systems , 2000 .

[17]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[18]  D. Hudgins,et al.  Interstellar PAH Emission in the 11-14 Micron Region: New Insightsfrom Laboratory Data and a Tracer of Ionized PAHs , 1999, The Astrophysical journal.

[19]  K. Sellgren,et al.  New 3 Micron Spectra of Young Stellar Objects with H2O Ice Bands , 1999, astro-ph/9903487.

[20]  C. Surace,et al.  The Universe as Seen by ISO , 1999 .

[21]  D. Hudgins,et al.  The Spacing of the Interstellar 6.2 and 7.7 Micron Emission Features as an Indicator of Polycyclic Aromatic Hydrocarbon Size , 1999, The Astrophysical journal.

[22]  S. Sandford,et al.  Modeling the Unidentified Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons , 1999, The Astrophysical journal.

[23]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[24]  Method of Regularization and Models of Interstellar Dust , 1999 .

[25]  C. Joblin,et al.  Solid interstellar matter : the ISO revolution : Les Houches Workshop, February 2-6, 1998 , 1999 .

[26]  J. Greenberg,et al.  Formation and Evolution of Solids in Space , 1999 .

[27]  W. Duley,et al.  Graphite, Polycyclic Aromatic Hydrocarbons, and the 2175 Å Extinction Feature , 1998 .

[28]  N. Odegard,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. III. Separation of Galactic Emission from the Infrared Sky Brightness , 1998, astro-ph/9805323.

[29]  J. Mathis The Near-Infrared Interstellar Silicate Bands and Grain Theories , 1998 .

[30]  S. Schlemmer,et al.  Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers. , 1998, The journal of physical chemistry. A.

[31]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[32]  S. Sandford,et al.  Infrared Spectroscopy of Matrix Isolated Polycyclic Aromatic Hydrocarbons. 1. PAHs Containing Two to Four Rings , 1998 .

[33]  S. Sandford,et al.  Infrared Spectroscopy of Matrix Isolated Polycyclic Aromatic Hydrocarbons. 3. Fluoranthene and the Benzofluoranthenes , 1998 .

[34]  W. Duley,et al.  Polycyclic Aromatic Hydrocarbons and Fullerenes as Decomposition Products of Hydrogenated Amorphous Carbon , 1997 .

[35]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[36]  M. W. Werner,et al.  Do the Infrared Emission Features Need Ultraviolet Excitation? , 1997, astro-ph/9711200.

[37]  L. Allamandola,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 4. The tetracyclic PAH isomers chrysene and 1,2-benzanthracene. , 1997, Journal of Physical Chemistry A.

[38]  E. Dwek Can Composite Fluffy Dust Particles Solve the Interstellar Carbon Crisis? , 1997, astro-ph/9701109.

[39]  T. Sasseen,et al.  Radiative Transfer Analysis of Far-Ultraviolet Background Observations Obtained with the Far Ultraviolet Space Telescope , 1997, astro-ph/9701017.

[40]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[41]  S. Sandford,et al.  Hydrogenated Polycyclic Aromatic Hydrocarbons and the 2940 and 2850 Wavenumber (3.40 and 3.51 micron) Infrared Emission Features , 1996, The Astrophysical journal.

[42]  J. Mathis Dust Models with Tight Abundance Constraints , 1996 .

[43]  Takashi Onaka,et al.  Detection of the Mid-Infrared Unidentified Bands in the Diffuse Galactic Emission by IRTS , 1996 .

[44]  H. Murakami,et al.  IRTS Observation of the Unidentified 3.3-Micron Band in the Diffuse Galactic Emission , 1996 .

[45]  C. H. Smith,et al.  An investigation of the 3-μm emission bands in planetary nebulae , 1996 .

[46]  S. Beckwith,et al.  Laboratory Results on Millimeter-Wave Absorption in Silicate Grain Materials at Cryogenic Temperatures , 1996 .

[47]  C. Joblin,et al.  Variations of the 8.6 and 11.3 μm Emission Bands within NGC 1333: Evidence for Polycyclic Aromatic Hydrocarbon Cations , 1996 .

[48]  S. Langhoff Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations and Anions , 1996 .

[49]  C. Joblin,et al.  Spatial variation of the 3.29 and 3.40 micron emission bands within reflection nebulae and the photochemical evolution of methylated polycyclic aromatic hydrocarbons. , 1996, The Astrophysical journal.

[50]  A. Tielens,et al.  Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal. , 1996, The Astrophysical journal.

[51]  K. Sellgren,et al.  A Survey of Near-Infrared Emission in Visual Reflection Nebulae , 1995, astro-ph/9508054.

[52]  A. Witt,et al.  The Interstellar Carbon Budget and the Role of Carbon in Dust and Large Molecules , 1995, Science.

[53]  K. Sellgren,et al.  A New 3.25 Micron Absorption Feature toward Monoceros R2/IRS 3 , 1995, astro-ph/9508056.

[54]  Jr.,et al.  Far-Infrared Spectral Observations of the Galaxy by COBE , 1995, astro-ph/9504056.

[55]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 2. The members of the thermodynamically most favorable series through coronene. , 1995, The Journal of physical chemistry.

[56]  Martin Vala,et al.  Vibrational and electronic spectra of matrix-isolated pentacene cations and anions. , 1995 .

[57]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 3. The polyacenes anthracene, tetracene, and pentacene. , 2013, The Journal of physical chemistry.

[58]  A. Tielens,et al.  THE PHOTOELECTRIC HEATING MECHANISM FOR VERY SMALL GRAPHITIC GRAINS AND POLYCYCLIC AROMATIC HYDROCARBONS , 1994 .

[59]  S. Tobita,et al.  SIZE EFFECTS ON DISSOCIATION RATES OF POLYCYCLIC AROMATIC HYDROCARBON CATIONS : LABORATORY STUDIES AND ASTROPHYSICAL IMPLICATIONS , 1994 .

[60]  S. Sandford,et al.  Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1. Matrix-isolated naphthalene and perdeuterated naphthalene. , 1994, The Journal of physical chemistry.

[61]  A. Tielens,et al.  Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons , 1993 .

[62]  S. Malhotra,et al.  On graphite and the 2175 Å extinction profile , 1993 .

[63]  M. Vala,et al.  Infrared frequencies and intensities for astrophysically important polycyclic aromatic hydrocarbon cations , 1993 .

[64]  A. Webster The vibrations of C60H60 and the unidentified infrared emission , 1993 .

[65]  T. Wdowiak,et al.  Laboratory Spectra of Polycyclic Aromatic Hydrocarbon Ions and the Interstellar Extinction Curve , 1993 .

[66]  D. Talbi,et al.  Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons: effect of ionization. , 1993, The Astrophysical journal.

[67]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Extinction , 1993 .

[68]  C. Reynaud,et al.  New developments of the coal model of interstellar dust , 1993 .

[69]  C. Joblin,et al.  Contribution of Polycyclic Aromatic Hydrocarbon Molecules to the Interstellar Extinction Curve , 1992 .

[70]  J. Barker,et al.  Infrared emission spectra of benzene and naphthalene : implications for the interstellar polycyclic aromatic hydrocarbon hypothesis , 1992 .

[71]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[72]  K. Sellgren,et al.  High-resolution spectra of the 3.29 micron interstellar emission feature - A summary , 1991 .

[73]  S. Bowyer,et al.  The albedo and scattering phase function of interstellar dust and the diffuse background at far-ultraviolet wavelengths. , 1991, The Astrophysical journal.

[74]  S. Stein,et al.  Prediction of carbon-hydrogen bond dissociation energies for polycyclic aromatic hydrocarbons of arbitrary size , 1991 .

[75]  T. Onaka,et al.  Quenched Carbonaceous Composite. III. Comparison to the 3.29 Micron Interstellar Emission Feature , 1990 .

[76]  Edward L. Fitzpatrick,et al.  An Analysis of the Shapes of Ultraviolet Extinction Curves. III. an Atlas of Ultraviolet Extinction Curves , 1990 .

[77]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[78]  B. Draine,et al.  Temperature fluctuations in interstellar grains. I. Computational method and sublimation of small grains , 1989 .

[79]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[80]  A. Tielens,et al.  The infrared emission bands. II. A spatial and spectral study of the Orion Bar. , 1989, The Astrophysical journal.

[81]  A. Tielens,et al.  Spatial variations of the 3 micron emission features within UV-excited nebulae: photochemical evolution of interstellar polycyclic aromatic hydrocarbons. , 1989, The Astrophysical journal.

[82]  S. Sandford,et al.  New emission features in the 11-13 micron region and their relationship to polycyclic aromatic hydrocarbons. , 1989, The Astrophysical journal.

[83]  J. Barker,et al.  Infrared Emission from a Polycyclic Aromatic Hydrocarbon (PAH) Excited by Ultraviolet Laser , 1989 .

[84]  J. Mathis,et al.  Composite interstellar grains , 1989 .

[85]  L. Allamandola,et al.  The infrared emission bands. III. Southern IRAS sources. , 1989, The Astrophysical journal.

[86]  P. Roche,et al.  The emission structure between 11 and 13 µm across the Orion ionization front , 1989 .

[87]  David A. Williams,et al.  Hydrogenated amorphous carbon-coated silicate particles as a source of interstellar extinction , 1989 .

[88]  J. Barker,et al.  Grains, or Molecules? Thermal, or Non-Thermal? , 1989 .

[89]  L. Verstraete,et al.  The PAH hypothesis and the extinction curve , 1989 .

[90]  F. Désert,et al.  INFRARED EMISSION MECHANISM IN LARGE ISOLATED MOLECULES , 1989 .

[91]  A. Dalgarno,et al.  Heating of interstellar gas by large molecules or small grains , 1988 .

[92]  M. Pérault,et al.  Diffuse infrared emission from the galaxy. I: Solar neighborhood , 1988 .

[93]  B. Draine,et al.  Collisional charging of interstellar grains , 1987 .

[94]  L. Colangeli,et al.  Amorphous carbon and the unidentified infrared bands , 1987 .

[95]  J. Mathis Interstellar dust and extinction , 1987 .

[96]  A. Tielens,et al.  The Hydrogen Coverage of Interstellar PAHs , 1987 .

[97]  J. Weiland,et al.  Infrared cirrus and high-latitude molecular clouds , 1986 .

[98]  N. Boccara,et al.  Polycyclic aromatic hydrocarbons and astrophysics , 1986 .

[99]  B. Draine,et al.  Temperature fluctuations and infrared emission from interstellar grains. , 1985 .

[100]  Alexander G. G. M. Tielens,et al.  Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way , 1985 .

[101]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[102]  F. J. Low,et al.  INFRARED CIRRUS - NEW COMPONENTS OF THE EXTENDED INFRARED-EMISSION , 1984 .

[103]  P. Barber Absorption and scattering of light by small particles , 1984 .

[104]  B. Draine The infrared signature of graphite grains. , 1983 .

[105]  J. Greenberg,et al.  A far-ultraviolet extinction law - What does it mean? , 1983 .

[106]  M. W. Werner,et al.  Extended near-infrared emission from visual reflection nebulae , 1983 .

[107]  David A. Williams,et al.  The infrared spectrum of interstellar dust: Surface functional groups on carbon , 1981 .

[108]  J. R. Houck,et al.  Infrared Spectroscopy In Astronomy , 1981, Other Conferences.

[109]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[110]  K. Nandy,et al.  The Ultraviolet Galactic Background from TD-1 Satellite Observations , 1976 .

[111]  C. F. Lillie,et al.  Ultraviolet photometry from the orbiting astronomical observatory. XXV. Diffuse galactic light in the 1500--4200 A region and the scattering properties of interstellar dust grains , 1976 .

[112]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .

[113]  K. M. Merrill,et al.  8-13 micron observations of Titan. , 1973 .

[114]  E. Koch,et al.  The vacuum ultraviolet spectrum of naphthalene vapour for photon energies from 5 to 30 eV , 1972 .

[115]  B. Donn Polycyclic hydrocarbons, Platt particles, and interstellar extinction. , 1968 .

[116]  T. P. Stecher Interstellar Ectinction in the Ultraviolet. , 1965 .

[117]  J. Greenberg The Sizes of Interstellar Grains. , 1960 .

[118]  J. Platt On the Optical Properties of Interstellar Dust. , 1956 .

[119]  R. Trumpler ABSORPTION OF LIGHT IN THE GALACTIC SYSTEM , 1930 .