Sub-quadratic convergence of a smoothing Newton algorithm for the P0– and monotone LCP

Abstract.Given , the linear complementarity problem (LCP) is to find such that (x, s)≥ 0,s=Mx+q,xTs=0. By using the Chen-Harker-Kanzow-Smale (CHKS) smoothing function, the LCP is reformulated as a system of parameterized smooth-nonsmooth equations. As a result, a smoothing Newton algorithm, which is a modified version of the Qi-Sun-Zhou algorithm [Mathematical Programming, Vol. 87, 2000, pp. 1–35], is proposed to solve the LCP with M being assumed to be a P0-matrix (P0–LCP). The proposed algorithm needs only to solve one system of linear equations and to do one line search at each iteration. It is proved in this paper that the proposed algorithm has the following convergence properties: (i) it is well-defined and any accumulation point of the iteration sequence is a solution of the P0–LCP; (ii) it generates a bounded sequence if the P0–LCP has a nonempty and bounded solution set; (iii) if an accumulation point of the iteration sequence satisfies a nonsingularity condition, which implies the P0–LCP has a unique solution, then the whole iteration sequence converges to this accumulation point sub-quadratically with a Q-rate 2–t, where t∈(0,1) is a parameter; and (iv) if M is positive semidefinite and an accumulation point of the iteration sequence satisfies a strict complementarity condition, then the whole sequence converges to the accumulation point quadratically.

[1]  Defeng Sun,et al.  Improving the convergence of non-interior point algorithms for nonlinear complementarity problems , 2000, Math. Comput..

[2]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[3]  Patrick T. Harker,et al.  A Noninterior Continuation Method for Quadratic and Linear Programming , 1993, SIAM J. Optim..

[4]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[5]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[6]  James V. Burke,et al.  The Global Linear Convergence of a Noninterior Path-Following Algorithm for Linear Complementarity Problems , 1998, Math. Oper. Res..

[7]  Christian Kanzow,et al.  A new approach to continuation methods for complementarity problems with uniform P-functions , 1997, Oper. Res. Lett..

[8]  M. Seetharama Gowda,et al.  Regularization of P[sub 0]-Functions in Box Variational Inequality Problems , 2000, SIAM J. Optim..

[9]  M. Seetharama Gowda,et al.  Weak Univalence and Connectedness of Inverse Images of Continuous Functions , 1999, Math. Oper. Res..

[10]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Box-Constrained Variational Inequalities , 1999 .

[11]  Xiaojun Chen,et al.  A Global Linear and Local Quadratic Continuation Smoothing Method for Variational Inequalities with Box Constraints , 2000, Comput. Optim. Appl..

[12]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Variational Inequalities , 1999 .

[13]  Zhenghai Huang,et al.  Predictor-Corrector Smoothing Newton Method, Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P0 Function , 2003 .

[14]  Christian Kanzow,et al.  Jacobian Smoothing Methods for Nonlinear Complementarity Problems , 1999, SIAM J. Optim..

[15]  F. Facchinei,et al.  Beyond Monotonicity in Regularization Methods for Nonlinear Complementarity Problems , 1999 .

[16]  P. Tseng Analysis Of A Non-Interior Continuation Method Based On Chen-Mangasarian Smoothing Functions For Com , 1998 .

[17]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[18]  L. Qi,et al.  Numerical Experiments for a Class of Squared Smoothing Newton Methods for Box Constrained Variational Inequality Problems , 1998 .

[19]  Xiaojun ChenyMay A Global and Local Superlinear Continuation-Smoothing Method for P0 +R0 and Monotone NCP , 1997 .

[20]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[21]  Keisuke Hotta,et al.  Global convergence of a class of non-interior point algorithms using Chen-Harker-Kanzow-Smale functions for nonlinear complementarity problems , 1999, Math. Program..

[22]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[23]  Bintong Chen,et al.  A Global Linear and Local Quadratic Noninterior Continuation Method for Nonlinear Complementarity Problems Based on Chen-Mangasarian Smoothing Functions , 1999, SIAM J. Optim..

[24]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[25]  Li-Zhi Liao,et al.  A Smoothing Newton Method for General Nonlinear Complementarity Problems , 2000, Comput. Optim. Appl..

[26]  Xiaojun Chen,et al.  A Global and Local Superlinear Continuation-Smoothing Method for P0 and R0 NCP or Monotone NCP , 1999, SIAM J. Optim..

[27]  Defeng Sun,et al.  Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems , 2002 .

[28]  Houduo Qi,et al.  A Regularized Smoothing Newton Method for Box Constrained Variational Inequality Problems with P0-Functions , 1999, SIAM J. Optim..

[29]  P. Tseng Error Bounds and Superlinear Convergence Analysis of Some Newton-Type Methods in Optimization , 2000 .

[30]  Song Xu,et al.  The global linear convergence of an infeasible non-interior path-following algorithm for complementarity problems with uniform P-functions , 2000, Math. Program..

[31]  L. Qi,et al.  Solving variational inequality problems via smoothing-nonsmooth reformulations , 2001 .

[32]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[33]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[34]  Christian Kanzow,et al.  Improved smoothing-type methods for the solution of linear programs , 2002, Numerische Mathematik.

[35]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[36]  Zhenghai Huang,et al.  Sufficient conditions on nonemptiness and boundedness of the solution set of the P0 function nonlinear complementarity problem , 2002, Oper. Res. Lett..

[37]  Paul Tseng,et al.  Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems , 2003, SIAM J. Optim..

[38]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[39]  J. J. Moré,et al.  Smoothing of mixed complementarity problems , 1995 .

[40]  Christian Kanzow,et al.  Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2002, SIAM J. Optim..

[41]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[42]  D. Sun A Regularization Newton Method for Solving Nonlinear Complementarity Problems , 1999 .

[43]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[44]  L. McLinden,et al.  Stable monotone variational inequalities , 1990, Math. Program..

[45]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[46]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[47]  Christian Kanzow,et al.  PREDICTOR-CORRECTOR SMOOTHING METHODS FOR THE SOLUTION OF LINEAR PROGRAMS1 , 2000 .

[48]  Song Xu,et al.  A non–interior predictor–corrector path following algorithm for the monotone linear complementarity problem , 2000, Math. Program..

[49]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..