Short-term synaptic plasticity: a comparison of two synapses

[1]  Pablo Fuentealba,et al.  Synaptic interactions between thalamic and cortical inputs onto cortical neurons in vivo. , 2004, Journal of neurophysiology.

[2]  Eve Marder,et al.  The dynamic clamp comes of age , 2004, Trends in Neurosciences.

[3]  Nikolai Axmacher,et al.  Intrinsic cellular currents and the temporal precision of EPSP–action potential coupling in CA1 pyramidal cells , 2004, The Journal of physiology.

[4]  Dieter Jaeger,et al.  Sodium Channels and Dendritic Spike Initiation at Excitatory Synapses in Globus Pallidus Neurons , 2004, The Journal of Neuroscience.

[5]  W. Regehr,et al.  Retinogeniculate synaptic properties controlling spike number and timing in relay neurons. , 2003, Journal of neurophysiology.

[6]  R. Reid,et al.  Efficacy of Retinal Spikes in Driving Cortical Responses , 2003, The Journal of Neuroscience.

[7]  Andreas Jeromin,et al.  Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1 , 2003, Nature Neuroscience.

[8]  G. Stuart,et al.  Voltage- and Site-Dependent Control of the Somatic Impact of Dendritic IPSPs , 2003, The Journal of Neuroscience.

[9]  Maria Blatow,et al.  Ca2+ Buffer Saturation Underlies Paired Pulse Facilitation in Calbindin-D28k-Containing Terminals , 2003, Neuron.

[10]  Matthew A Xu-Friedman,et al.  Ultrastructural Contributions to Desensitization at Cerebellar Mossy Fiber to Granule Cell Synapses , 2003, The Journal of Neuroscience.

[11]  Felix Felmy,et al.  Probing the Intracellular Calcium Sensitivity of Transmitter Release during Synaptic Facilitation , 2003, Neuron.

[12]  G. Stuart,et al.  Role of dendritic synapse location in the control of action potential output , 2003, Trends in Neurosciences.

[13]  Acknowledgements , 2003, Psychoneuroendocrinology.

[14]  C. Jahr,et al.  Receptor Occupancy Limits Synaptic Depression at Climbing Fiber Synapses , 2003, The Journal of Neuroscience.

[15]  W. Usrey Spike timing and visual processing in the retinogeniculocortical pathway. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  Anatol C. Kreitzer,et al.  Interaction of Postsynaptic Receptor Saturation with Presynaptic Mechanisms Produces a Reliable Synapse , 2002, Neuron.

[17]  Wade G. Regehr,et al.  Quantal events shape cerebellar interneuron firing , 2002, Nature Neuroscience.

[18]  Gary J. Rose,et al.  Roles for short-term synaptic plasticity in behavior , 2002, Journal of Physiology-Paris.

[19]  R. Reid,et al.  Precise Firing Events Are Conserved across Neurons , 2002, The Journal of Neuroscience.

[20]  W. Usrey The role of spike timing for thalamocortical processing , 2002, Current Opinion in Neurobiology.

[21]  Megan R. Carey,et al.  Embarrassed, but Not Depressed Eye Opening Lessons for Cerebellar Learning , 2002, Neuron.

[22]  H. Atwood,et al.  Diversification of synaptic strength: presynaptic elements , 2002, Nature Reviews Neuroscience.

[23]  M. Mayer,et al.  Mechanism of glutamate receptor desensitization , 2002, Nature.

[24]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[25]  Wade G. Regehr,et al.  Contributions of Receptor Desensitization and Saturation to Plasticity at the Retinogeniculate Synapse , 2002, Neuron.

[26]  E. Neher,et al.  Calmodulin Mediates Rapid Recruitment of Fast-Releasing Synaptic Vesicles at a Calyx-Type Synapse , 2001, Neuron.

[27]  J P Welsh,et al.  Dynamic modulation of mossy fiber system throughput by inferior olive synchrony: a multielectrode study of cerebellar cortex activated by motor cortex. , 2001, Journal of neurophysiology.

[28]  C. Jahr,et al.  Multivesicular Release at Climbing Fiber-Purkinje Cell Synapses , 2001, Neuron.

[29]  M A Xu-Friedman,et al.  Three-Dimensional Comparison of Ultrastructural Characteristics at Depressing and Facilitating Synapses onto Cerebellar Purkinje Cells , 2001, The Journal of Neuroscience.

[30]  M. Ito,et al.  Cerebellar long-term depression: characterization, signal transduction, and functional roles. , 2001, Physiological reviews.

[31]  A. Craig,et al.  Molecular heterogeneity of central synapses: afferent and target regulation , 2001, Nature Neuroscience.

[32]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[33]  L. Trussell,et al.  Minimizing Synaptic Depression by Control of Release Probability , 2001, The Journal of Neuroscience.

[34]  M. H. Rowe,et al.  Dynamic properties of retino-geniculate synapses in the cat , 2001, Visual Neuroscience.

[35]  W. Guido,et al.  Burst and tonic response modes in thalamic neurons during sleep and wakefulness. , 2001, Journal of neurophysiology.

[36]  S. Sherman Tonic and burst firing: dual modes of thalamocortical relay , 2001, Trends in Neurosciences.

[37]  H. von Gersdorff,et al.  Fine-Tuning an Auditory Synapse for Speed and Fidelity: Developmental Changes in Presynaptic Waveform, EPSC Kinetics, and Synaptic Plasticity , 2000, The Journal of Neuroscience.

[38]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[39]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[40]  M. Sur,et al.  Activity-Dependent Patterning of Retinogeniculate Axons Proceeds with a Constant Contribution from AMPA and NMDA Receptors , 2000, The Journal of Neuroscience.

[41]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[42]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[43]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[44]  Wade G Regehr,et al.  Monitoring Presynaptic Calcium Dynamics in Projection Fibers by In Vivo Loading of a Novel Calcium Indicator , 2000, Neuron.

[45]  Hiroshi Takagi,et al.  Roles of ion channels in EPSP integration at neuronal dendrites , 2000, Neuroscience Research.

[46]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[47]  Anatol C. Kreitzer,et al.  Modulation of Transmission during Trains at a Cerebellar Synapse , 2000, The Journal of Neuroscience.

[48]  S. Sherman,et al.  Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys , 2000, Visual Neuroscience.

[49]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[50]  E. Marder,et al.  Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Jahr,et al.  The Concentration of Synaptically Released Glutamate Outside of the Climbing Fiber–Purkinje Cell Synaptic Cleft , 1999, The Journal of Neuroscience.

[52]  N. Akaike,et al.  Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus , 1999, Neuroscience.

[53]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[54]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[55]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[56]  C. Stevens,et al.  Regulation of the Readily Releasable Vesicle Pool by Protein Kinase C , 1998, Neuron.

[57]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[58]  W G Regehr,et al.  Calcium Dependence and Recovery Kinetics of Presynaptic Depression at the Climbing Fiber to Purkinje Cell Synapse , 1998, The Journal of Neuroscience.

[59]  Charles F Stevens,et al.  Activity-Dependent Modulation of the Rate at which Synaptic Vesicles Become Available to Undergo Exocytosis , 1998, Neuron.

[60]  J. Bloedel,et al.  Current concepts of climbing fiber function , 1998, The Anatomical record.

[61]  Leonard K. Kaczmarek,et al.  High-frequency firing helps replenish the readily releasable pool of synaptic vesicles , 1998, Nature.

[62]  Masanobu Kano,et al.  Presynaptic origin of paired‐pulse depression at climbing fibre‐Purkinje cell synapses in the rat cerebellum , 1998, The Journal of physiology.

[63]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[64]  A. Roth,et al.  Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells , 1997, The Journal of physiology.

[65]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[66]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[67]  MF Bear Progress in understanding NMDA-receptor-dependent synaptic plasticity in the visual cortex , 1996, Journal of Physiology-Paris.

[68]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[69]  G. Westbrook,et al.  The impact of receptor desensitization on fast synaptic transmission , 1996, Trends in Neurosciences.

[70]  S. Sherman,et al.  Dual response modes in lateral geniculate neurons: Mechanisms and functions , 1996, Visual Neuroscience.

[71]  W. Guido,et al.  Burst responses in thalamic relay cells of the awake behaving cat. , 1995, Journal of neurophysiology.

[72]  J. Storm-Mathisen,et al.  Glutamate transporters in glial plasma membranes: Highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry , 1995, Neuron.

[73]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[74]  T. Bliss,et al.  Memories of NMDA receptors and LTP , 1995, Trends in Neurosciences.

[75]  I. Soltesz,et al.  Sensory input and burst firing output of rat and cat thalamocortical cells: the role of NMDA and non‐NMDA receptors. , 1994, The Journal of physiology.

[76]  R. Zucker,et al.  Residual Ca2 + and short-term synaptic plasticity , 1994, Nature.

[77]  A. Levey,et al.  Localization of neuronal and glial glutamate transporters , 1994, Neuron.

[78]  N. Spruston,et al.  Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS , 1994, Current Opinion in Neurobiology.

[79]  Damon L. McCormick,et al.  Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  T. Salt,et al.  Excitatory Amino Acid Receptors Participate in Synaptic Transmission of Visual Responses in the Superficial Layers of the Cat Superior Colliculus , 1994, The European journal of neuroscience.

[81]  S. Sherman,et al.  The brain-stem parabrachial region controls mode of response to visual stimulation of neurons in the cat’s lateral geniculate nucleus , 1993, Visual Neuroscience.

[82]  R. Sprengel,et al.  The unique properties of glutamate receptor channels , 1993, FEBS letters.

[83]  L. Trussell,et al.  Desensitization of AMPA receptors upon multiquantal neurotransmitter release , 1993, Neuron.

[84]  E. Welker,et al.  The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[86]  C. Zorumski,et al.  Properties of vertebrate glutamate receptors: Calcium mobilization and desensitization , 1992, Progress in Neurobiology.

[87]  S. W. Kuffler,et al.  From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System , 1992 .

[88]  A. Konnerth,et al.  Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. Sur,et al.  Retinogeniculate EPSPs recorded intracellularly in the ferret lateral geniculate nucleus in vitro: Role of NMDA receptors , 1992, Visual Neuroscience.

[90]  David A. McCormick,et al.  Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  M. Sur,et al.  NMDA and non-NMDA receptors mediate visual responses of neurons in the cat's lateral geniculate nucleus. , 1991, Journal of neurophysiology.

[92]  M. Farrant,et al.  Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[93]  Klaus Funke,et al.  Retinogeniculate transmission by NMDA and non-NMDA receptors in the cat , 1991, Brain Research.

[94]  A. Konnerth,et al.  Synaptic‐ and agonist‐induced excitatory currents of Purkinje cells in rat cerebellar slices. , 1991, The Journal of physiology.

[95]  D. McCormick,et al.  Functional implications of burst firing and single spike activity in lateral geniculate relay neurons , 1990, Neuroscience.

[96]  A. Sillito,et al.  The contribution of thenon-N-methyl-d-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat , 1990, Neuroscience.

[97]  S. Sherman,et al.  N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[98]  A. Sillito,et al.  Dependence of retinogeniculate transmission in cat on NMDA receptors. , 1990, Journal of neurophysiology.

[99]  R. Harvey,et al.  Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum , 1988, The Journal of comparative neurology.

[100]  R. Harvey,et al.  Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat , 1988, The Journal of comparative neurology.

[101]  M. Mayer,et al.  The physiology of excitatory amino acids in the vertebrate central nervous system , 1987, Progress in Neurobiology.

[102]  M. Mayer,et al.  Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones. , 1987, The Journal of physiology.

[103]  T. Bliss,et al.  NMDA receptors - their role in long-term potentiation , 1987, Trends in Neurosciences.

[104]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[105]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[106]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[107]  T. Ebner,et al.  Rhythmic discharge of climbing fibre afferents in response to natural peripheral stimuli in the cat. , 1984, The Journal of physiology.

[108]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[109]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[110]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[111]  D. Armstrong,et al.  Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. , 1979, The Journal of physiology.

[112]  E. V. Famiglietti,et al.  The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat , 1972, The Journal of comparative neurology.

[113]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[114]  R. W. Rodieck,et al.  Response of cat retinal ganglion cells to moving visual patterns. , 1965, Journal of neurophysiology.

[115]  J. Eccles,et al.  Excitation of Cerebellar Purkinje Cells by the Climbing Fibres , 1964, Nature.

[116]  B. Katz,et al.  Statistical factors involved in neuromuscular facilitation and depression , 1954, The Journal of physiology.

[117]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[118]  S. W. Kuffler,et al.  NATURE OF THE "ENDPLATE POTENTIAL" IN CURARIZED MUSCLE , 1941 .

[119]  W. Regehr,et al.  Structural contributions to short-term synaptic plasticity. , 2004, Physiological reviews.

[120]  Henry Markram,et al.  Coding of temporal information by activity-dependent synapses. , 2002, Journal of neurophysiology.

[121]  J. Borst,et al.  Short-term plasticity at the calyx of held , 2002, Nature Reviews Neuroscience.

[122]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[123]  N W Daw,et al.  The role of NMDA receptors in information processing. , 1993, Annual review of neuroscience.

[124]  C. Cotman,et al.  The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. , 1989, Annual review of pharmacology and toxicology.

[125]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. , 1980, The Journal of physiology.

[126]  Prof. Dr. Sanford L. Palay,et al.  Cerebellar Cortex , 1974, Springer Berlin Heidelberg.

[127]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[128]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.