Enhanced internal condensation of R1233zd(E) on micro- and nanostructured copper and aluminum surfaces

[1]  A. Jacobi,et al.  Etching-enabled ultra-scalable micro and nanosculpturing of metal surfaces for enhanced thermal performance , 2023, Applied Physics Letters.

[2]  J. Y. Ho,et al.  Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review , 2022, Nanoscale advances.

[3]  K. Leong,et al.  Ultrascalable Surface Structuring Strategy of Metal Additively Manufactured Materials for Enhanced Condensation , 2022, Advanced science.

[4]  Muhammad Jahidul Hoque,et al.  Polydimethylsiloxane‐Silane Synergy enables Dropwise Condensation of Low Surface Tension Liquids , 2022, Advanced Functional Materials.

[5]  Jing-xiang Chen,et al.  Experimental investigation on convective condensation heat transfer in horizontal 4mm diameter coated tube , 2022, International Journal of Heat and Mass Transfer.

[6]  J. Y. Ho,et al.  Opportunities in Nanoengineered Surface Designs for Enhanced Condensation Heat and Mass Transfer , 2022, Journal of Heat Transfer.

[7]  K. Boyina,et al.  Superhydrophobic Heat Exchangers Delay Frost Formation and Reduce Defrost Energy Input of Aircraft Environmental Control Systems , 2022, SSRN Electronic Journal.

[8]  N. Miljkovic,et al.  Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling , 2021, Renewable and Sustainable Energy Reviews.

[9]  K. F. Rabbi,et al.  Superior Antidegeneration Hierarchical Nanoengineered Wicking Surfaces for Boiling Enhancement , 2021, Advanced Functional Materials.

[10]  Zhuo Chen,et al.  Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces. , 2021, ACS applied materials & interfaces.

[11]  Allison J. Mahvi,et al.  Scalable and Resilient Etched Metallic Micro- and Nanostructured Surfaces for Enhanced Flow Boiling , 2021, ACS Applied Nano Materials.

[12]  J. Y. Ho,et al.  Dropwise condensation of low surface tension fluids on lubricant-infused surfaces: Droplet size distribution and heat transfer , 2021 .

[13]  G. Li Performance Assessment of Low Global Warming Potential Working Fluids R1233zd (E) and R1224yd(Z) for Low Pressure Centrifugal Chiller Applications , 2021 .

[14]  Kashif Nawaz,et al.  Review of heat transfer enhancement techniques for single phase flows , 2021 .

[15]  K. F. Rabbi,et al.  Wettability-defined frosting dynamics between plane fins in quiescent air , 2021 .

[16]  D. J. Preston,et al.  Polymer Infused Porous Surfaces for Robust, Thermally Conductive, Self-Healing Coatings for Dropwise Condensation. , 2020, ACS nano.

[17]  Nae-Hyun Kim,et al.  Flow condensation of R-410A in multiport tubes having smooth or micro-finned internal channels , 2020, Experimental Heat Transfer.

[18]  J. Thome,et al.  Experimental Analysis of the Condenser Design in a Thermosiphon System for Cooling of Telecommunication Electronics , 2020, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[19]  M. Sheikholeslami,et al.  A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: A combined analytical and experimental study , 2020 .

[20]  S. Sett,et al.  Dropwise condensation on solid hydrophilic surfaces , 2020, Science Advances.

[21]  Allison J. Mahvi,et al.  Stable Dropwise Condensation of Ethanol and Hexane on Rationally-Designed Ultra-Scalable Nanostructured Lubricant-Infused Surfaces. , 2019, Nano letters.

[22]  L. Jia,et al.  Investigation on R141b convective condensation in microchannel with low surface energy coating and hierarchical nanostructures surface , 2019, Applied Thermal Engineering.

[23]  Taylor A Farnham,et al.  Grafted Nanofilms Promote Dropwise Condensation of Low-Surface-Tension Fluids for High-Performance Heat Exchangers , 2019, Joule.

[24]  Jinliang Xu,et al.  Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface , 2019, International Journal of Heat and Mass Transfer.

[25]  P. Hrnjak,et al.  A flow regime map for condensation in macro and micro tubes with non-equilibrium effects taken into account , 2019, International Journal of Heat and Mass Transfer.

[26]  H. Bart,et al.  Is dropwise condensation feasible? A review on surface modifications for continuous dropwise condensation and a profitability analysis , 2018, Journal of advanced research.

[27]  D. Del Col,et al.  Nano-structured aluminum surfaces for dropwise condensation , 2018, Surface and Coatings Technology.

[28]  Laura Fedele,et al.  Low GWP halocarbon refrigerants: A review of thermophysical properties , 2018, International Journal of Refrigeration.

[29]  Laura L. Becerra,et al.  Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[30]  M. Shah Comprehensive correlations for heat transfer during condensation in conventional and mini/micro channels in all orientations , 2016 .

[31]  Chieko Kondou,et al.  Surface tension of low GWP refrigerants R1243zf, R1234ze(Z), and R1233zd(E) , 2015 .

[32]  K. Kim,et al.  Internal dropwise condensation: Modeling and experimental framework for horizontal tube condensers , 2015 .

[33]  Y. Peles,et al.  Enhancement of condensation heat transfer with patterned surfaces , 2014 .

[34]  K. Kim,et al.  Dropwise Condensation on Micro- and Nanostructured Surfaces , 2014 .

[35]  A. S. Dalkılıç,et al.  A Critical Review on Condensation Heat Transfer in Microchannels and Minichannels , 2014 .

[36]  S. Garimella Condensation in Minichannels and Microchannels , 2014 .

[37]  Y. Peles,et al.  Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns , 2014 .

[38]  A. Cavallini,et al.  Condensation flow patterns inside plain and microfin tubes: a review. , 2013 .

[39]  Evelyn N Wang,et al.  Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. , 2012, Nano letters.

[40]  Evelyn N. Wang,et al.  Condensation on superhydrophobic copper oxide nanostructures , 2012 .

[41]  Ahmad Saboonchi,et al.  Experimental study of condensation heat transfer of R-134a flow in corrugated tubes with different inclinations , 2012 .

[42]  Vahid Hejazi,et al.  Experimental investigation of twisted tape inserts performance on condensation heat transfer enhancement and pressure drop , 2010 .

[43]  Akio Miyara,et al.  Condensation of hydrocarbons – A review , 2008 .

[44]  A. Cavallini,et al.  Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design , 2006 .

[45]  J. W. Rose Enhanced Condensation Heat Transfer , 2006 .

[46]  K. S. Lee,et al.  Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes , 2005 .

[47]  J. W. Rose Surface Tension Effects and Enhancement of Condensation Heat Transfer , 2004 .

[48]  J. Thome,et al.  Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map , 2003 .

[49]  Davide Del Col,et al.  Condensation of Halogenated Refrigerants Inside Smooth Tubes , 2002 .

[50]  Gerry B. Andeen,et al.  The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes , 2000 .

[51]  A. Cavallini,et al.  Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes , 2000 .

[52]  Anil Kumar,et al.  Heat transfer augmentation by coiled wire inserts during forced convection condensation of R-22 inside horizontal tubes , 1998 .

[53]  H. Haraguchi,et al.  冷媒HCFC22,HFC134a,HCFC123の水平平滑管内凝縮 : 第2報, 局所熱伝達係数に関する実験式の提案 , 1994 .

[54]  Barbara Pfeffer,et al.  Refrigeration and Air Conditioning , 1982 .