Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption.

We report the synthesis of metal-chalcogenide aerogels from Pt(2+) and polysulfide clusters ([S(x)](2-), x = 3-6). The cross-linking reaction of these ionic building blocks in formamide solution results in spontaneous gelation and eventually forms a monolithic dark brown gel. The wet gel is transformed into a highly porous aerogel by solvent exchanging and subsequent supercritical drying with CO(2). The resulting platinum polysulfide aerogels possess a highly porous and amorphous structure with an intact polysulfide backbone. These chalcogels feature an anionic network that is charged balanced with potassium cations, and hosts highly accessible S-S bonding sites, which allows for reversible cation exchange and mercury vapor capture that is superior to any known material.

[1]  M. Kanatzidis,et al.  Extraordinary Selectivity of CoMo3S13 Chalcogel for C2H6 and CO2 Adsorption , 2011, Advanced materials.

[2]  M. Wasielewski,et al.  Biomimetic multifunctional porous chalcogels as solar fuel catalysts. , 2011, Journal of the American Chemical Society.

[3]  M. Kanatzidis,et al.  Selective Surfaces: High-Surface-Area Zinc Tin Sulfide Chalcogels , 2011 .

[4]  M. Kanatzidis,et al.  Ion-exchangeable cobalt polysulfide chalcogel. , 2011, Journal of the American Chemical Society.

[5]  M. Kanatzidis,et al.  Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation. , 2010, Journal of the American Chemical Society.

[6]  D. Bhattacharyya,et al.  Sulfur-Functionalization of Porous Silica Particles and Application to Mercury Vapor Sorption. , 2010, Industrial & engineering chemistry research.

[7]  M. Kanatzidis,et al.  Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. , 2009, Nature chemistry.

[8]  B. Liang,et al.  Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes. , 2009, The journal of physical chemistry. A.

[9]  S. Sikdar,et al.  Copper-Doped Silica Materials Silanized With Bis-(Triethoxy Silyl Propyl)-Tetra Sulfide for Mercury Vapor Capture , 2008 .

[10]  G. Armatas,et al.  Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters , 2007, Science.

[11]  S. Sikdar,et al.  Examination of Sulfur-Functionalized, Copper-Doped Iron Nanoparticles for Vapor-Phase Mercury Capture in Entrained-Flow and Fixed-Bed Systems , 2007 .

[12]  S. Brock,et al.  Sol-gel methods for the assembly of metal chalcogenide quantum dots. , 2007, Accounts of chemical research.

[13]  S. Brock,et al.  Highly luminescent quantum-dot monoliths. , 2007, Journal of the American Chemical Society.

[14]  S. Brock,et al.  METAL CHALCOGENIDE GELS, XEROGELS AND AEROGELS , 2006 .

[15]  S. Brock,et al.  Sol−Gel Processing of Semiconducting Metal Chalcogenide Xerogels: Influence of Dimensionality on Quantum Confinement Effects in a Nanoparticle Network , 2005 .

[16]  K. Powers,et al.  Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. , 2005, Environmental science & technology.

[17]  Stephanie L. Brock,et al.  A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties , 2004 .

[18]  M. Rood,et al.  Mercury Adsorption Properties of Sulfur-Impregnated Adsorbents , 2002 .

[19]  B. Gullett,et al.  Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. , 2002, Environmental science & technology.

[20]  J. Boilot,et al.  Transformation of CdS Colloids: Sols, Gels, and Precipitates , 2001 .

[21]  V. Stanic,et al.  Chemical Kinetics Study of the Sol−Gel Processing of GeS2 , 2001 .

[22]  A. Vidales,et al.  Percolation Effects on Adsorption−Desorption Hysteresis , 2000 .

[23]  D. Proserpio,et al.  Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine , 1999 .

[24]  C. Senior,et al.  XAFS Examination of Mercury Sorption on Three Activated Carbons , 1999 .

[25]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[26]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[27]  A. Pierre,et al.  Preparation of tungsten sulfides by sol—gel processing , 1997 .

[28]  J. Boilot,et al.  New transparent chalcogenide materials using a sol-gel process , 1997 .

[29]  A. Pierre,et al.  Sol-gel processing of ZnS , 1997 .

[30]  P. Chu,et al.  Mercury stack emissions from U.S. electric utility power plants , 1995 .

[31]  M. Kanatzidis,et al.  Hydro(methano)thermal synthesis and characterization of two new platinum polysulfides : [Pt4S22]4- and [Pt(S4)2]2- , 1993 .

[32]  M. Kanatzidis,et al.  Open Framework Structures Based on Sex2– Fragments: Synthesis of (Ph4P)[M(Se6)2] (M = Ga, In, TI) in Molten (Ph4P)2Sex , 1992, Science.

[33]  M. Kanatzidis,et al.  Synthesis, x-ray structure determination, and spectroscopy of the silver(I) polyselenides [(Ph4P)Ag(Se4)]n, [(Me4N)Ag(Se5)]n, [(Et4N)Ag(Se4)]4, and (Pr4N)2[Ag4(Se4)3]. Extreme structure dependence on counterion size , 1991 .

[34]  R. Meij The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization , 1991 .

[35]  M. Kanatzidis,et al.  Low‐Dimensional Compounds Incorporating Polychalcogenide Ligands. The Unusual Polymeric Structures of [AuSe5] n⊖n and [AuSe13] 3n⊖n , 1990 .

[36]  Shirley S. Chan,et al.  Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2 , 1981 .

[37]  G. Janz,et al.  Raman studies of sulfur-containing anions in inorganic polysulfides. Sodium polysulfides , 1976 .

[38]  Vollmann Seeligmann‐Zieke, Handbuch der Lack‐ und Firnißindustrie. III. Auflage. herausgegeben von E. Zieke und Dr. H. Wolff, mitbearbeitet von W. Schick und Dr. Zimmer. Berlin 1923. Union, Deutsche Verlagsgesellschaft. 827 Seiten , 1924 .