Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption.
暂无分享,去创建一个
[1] M. Kanatzidis,et al. Extraordinary Selectivity of CoMo3S13 Chalcogel for C2H6 and CO2 Adsorption , 2011, Advanced materials.
[2] M. Wasielewski,et al. Biomimetic multifunctional porous chalcogels as solar fuel catalysts. , 2011, Journal of the American Chemical Society.
[3] M. Kanatzidis,et al. Selective Surfaces: High-Surface-Area Zinc Tin Sulfide Chalcogels , 2011 .
[4] M. Kanatzidis,et al. Ion-exchangeable cobalt polysulfide chalcogel. , 2011, Journal of the American Chemical Society.
[5] M. Kanatzidis,et al. Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation. , 2010, Journal of the American Chemical Society.
[6] D. Bhattacharyya,et al. Sulfur-Functionalization of Porous Silica Particles and Application to Mercury Vapor Sorption. , 2010, Industrial & engineering chemistry research.
[7] M. Kanatzidis,et al. Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. , 2009, Nature chemistry.
[8] B. Liang,et al. Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes. , 2009, The journal of physical chemistry. A.
[9] S. Sikdar,et al. Copper-Doped Silica Materials Silanized With Bis-(Triethoxy Silyl Propyl)-Tetra Sulfide for Mercury Vapor Capture , 2008 .
[10] G. Armatas,et al. Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters , 2007, Science.
[11] S. Sikdar,et al. Examination of Sulfur-Functionalized, Copper-Doped Iron Nanoparticles for Vapor-Phase Mercury Capture in Entrained-Flow and Fixed-Bed Systems , 2007 .
[12] S. Brock,et al. Sol-gel methods for the assembly of metal chalcogenide quantum dots. , 2007, Accounts of chemical research.
[13] S. Brock,et al. Highly luminescent quantum-dot monoliths. , 2007, Journal of the American Chemical Society.
[14] S. Brock,et al. METAL CHALCOGENIDE GELS, XEROGELS AND AEROGELS , 2006 .
[15] S. Brock,et al. Sol−Gel Processing of Semiconducting Metal Chalcogenide Xerogels: Influence of Dimensionality on Quantum Confinement Effects in a Nanoparticle Network , 2005 .
[16] K. Powers,et al. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. , 2005, Environmental science & technology.
[17] Stephanie L. Brock,et al. A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties , 2004 .
[18] M. Rood,et al. Mercury Adsorption Properties of Sulfur-Impregnated Adsorbents , 2002 .
[19] B. Gullett,et al. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. , 2002, Environmental science & technology.
[20] J. Boilot,et al. Transformation of CdS Colloids: Sols, Gels, and Precipitates , 2001 .
[21] V. Stanic,et al. Chemical Kinetics Study of the Sol−Gel Processing of GeS2 , 2001 .
[22] A. Vidales,et al. Percolation Effects on Adsorption−Desorption Hysteresis , 2000 .
[23] D. Proserpio,et al. Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine , 1999 .
[24] C. Senior,et al. XAFS Examination of Mercury Sorption on Three Activated Carbons , 1999 .
[25] K. Sing,et al. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .
[26] U. Schubert,et al. Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.
[27] A. Pierre,et al. Preparation of tungsten sulfides by sol—gel processing , 1997 .
[28] J. Boilot,et al. New transparent chalcogenide materials using a sol-gel process , 1997 .
[29] A. Pierre,et al. Sol-gel processing of ZnS , 1997 .
[30] P. Chu,et al. Mercury stack emissions from U.S. electric utility power plants , 1995 .
[31] M. Kanatzidis,et al. Hydro(methano)thermal synthesis and characterization of two new platinum polysulfides : [Pt4S22]4- and [Pt(S4)2]2- , 1993 .
[32] M. Kanatzidis,et al. Open Framework Structures Based on Sex2– Fragments: Synthesis of (Ph4P)[M(Se6)2] (M = Ga, In, TI) in Molten (Ph4P)2Sex , 1992, Science.
[33] M. Kanatzidis,et al. Synthesis, x-ray structure determination, and spectroscopy of the silver(I) polyselenides [(Ph4P)Ag(Se4)]n, [(Me4N)Ag(Se5)]n, [(Et4N)Ag(Se4)]4, and (Pr4N)2[Ag4(Se4)3]. Extreme structure dependence on counterion size , 1991 .
[34] R. Meij. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization , 1991 .
[35] M. Kanatzidis,et al. Low‐Dimensional Compounds Incorporating Polychalcogenide Ligands. The Unusual Polymeric Structures of [AuSe5] n⊖n and [AuSe13] 3n⊖n , 1990 .
[36] Shirley S. Chan,et al. Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2 , 1981 .
[37] G. Janz,et al. Raman studies of sulfur-containing anions in inorganic polysulfides. Sodium polysulfides , 1976 .
[38] Vollmann. Seeligmann‐Zieke, Handbuch der Lack‐ und Firnißindustrie. III. Auflage. herausgegeben von E. Zieke und Dr. H. Wolff, mitbearbeitet von W. Schick und Dr. Zimmer. Berlin 1923. Union, Deutsche Verlagsgesellschaft. 827 Seiten , 1924 .