Neural circuits for learning context-dependent associations of stimuli

[1]  Michael E Hasselmo,et al.  A network model of behavioural performance in a rule learning task , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  Fuchun Sun,et al.  Extreme Trust Region Policy Optimization for Active Object Recognition , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[3]  Jing Wang,et al.  An Actor-Critic Algorithm With Second-Order Actor and Critic , 2017, IEEE Transactions on Automatic Control.

[4]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[5]  Martin A. Riedmiller,et al.  Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images , 2015, NIPS.

[6]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[7]  Sergey Levine,et al.  End-to-End Training of Deep Visuomotor Policies , 2015, J. Mach. Learn. Res..

[8]  Marc G. Bellemare,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[9]  Michael I. Jordan,et al.  Trust Region Policy Optimization , 2015, ICML.

[10]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[11]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[12]  Michael E. Hasselmo,et al.  Deep Belief Networks Learn Context Dependent Behavior , 2014, PloS one.

[13]  Xin Xu,et al.  Reinforcement learning algorithms with function approximation: Recent advances and applications , 2014, Inf. Sci..

[14]  Jonathan D. Cohen,et al.  Indirection and symbol-like processing in the prefrontal cortex and basal ganglia , 2013, Proceedings of the National Academy of Sciences.

[15]  Robert Babuska,et al.  A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[16]  Ioannis Ch. Paschalidis,et al.  A least squares temporal difference actor–critic algorithm with applications to warehouse management , 2012 .

[17]  M. Frank,et al.  Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI. , 2012, Cerebral cortex.

[18]  Jing Wang,et al.  Temporal logic motion control using actor–critic methods , 2012, 2012 IEEE International Conference on Robotics and Automation.

[19]  Seth A. Herd,et al.  From an Executive Network to Executive Control: A Computational Model of the n-back Task , 2011, Journal of Cognitive Neuroscience.

[20]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[21]  M. D’Esposito,et al.  Frontal Cortex and the Discovery of Abstract Action Rules , 2010, Neuron.

[22]  Ioannis Ch. Paschalidis,et al.  A Distributed Actor-Critic Algorithm and Applications to Mobile Sensor Network Coordination Problems , 2010, IEEE Transactions on Automatic Control.

[23]  Eric A. Zilli,et al.  The Influence of Markov Decision Process Structure on the Possible Strategic Use of Working Memory and Episodic Memory , 2008, PloS one.

[24]  Stefan Schaal,et al.  2008 Special Issue: Reinforcement learning of motor skills with policy gradients , 2008 .

[25]  Eric A. Zilli,et al.  Modeling the role of working memory and episodic memory in behavioral tasks , 2008, Hippocampus.

[26]  Michael E. Hasselmo,et al.  Coincidence Detection of Place and Temporal Context in a Network Model of Spiking Hippocampal Neurons , 2007, PLoS Comput. Biol..

[27]  Thomas E. Hazy,et al.  PVLV: the primary value and learned value Pavlovian learning algorithm. , 2007, Behavioral neuroscience.

[28]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[29]  M. Hasselmo,et al.  An integrate-and-fire model of prefrontal cortex neuronal activity during performance of goal-directed decision making. , 2005, Cerebral cortex.

[30]  M. Hasselmo,et al.  Hippocampal mechanisms for the context-dependent retrieval of episodes , 2005, Neural Networks.

[31]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[32]  Michael E. Hasselmo,et al.  A Model of Prefrontal Cortical Mechanisms for Goal-directed Behavior , 2005, Journal of Cognitive Neuroscience.

[33]  Jürgen Schmidhuber,et al.  Framewise phoneme classification with bidirectional LSTM and other neural network architectures , 2005, Neural Networks.

[34]  Vijay R. Konda,et al.  OnActor-Critic Algorithms , 2003, SIAM J. Control. Optim..

[35]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[36]  K. C. Anderson,et al.  Single neurons in prefrontal cortex encode abstract rules , 2001, Nature.

[37]  Jürgen Schmidhuber,et al.  Learning to Forget: Continual Prediction with LSTM , 2000, Neural Computation.

[38]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[39]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[40]  John N. Tsitsiklis,et al.  Analysis of temporal-difference learning with function approximation , 1996, NIPS 1996.

[41]  D. Bertsekas Dynamic programming and optimal control, 3rd Edition , 1995 .

[42]  Gerald Tesauro,et al.  TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play , 1994, Neural Computation.

[43]  John N. Tsitsiklis,et al.  Asynchronous stochastic approximation and Q-learning , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[44]  P. Dayan,et al.  Q-learning , 1992, Machine Learning.

[45]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[46]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[47]  Peter Stone,et al.  Reinforcement learning , 2019, Scholarpedia.

[48]  Dimitri P. Bertsekas,et al.  Neuro-Dynamic Programming , 2009, Encyclopedia of Optimization.

[49]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[50]  Michael E. Hasselmo,et al.  Frontiers in Computational Neuroscience Computational Neuroscience Analyses of Markov Decision Process Structure regarding the Possible Strategic Use of Interacting Memory Systems the Common Way of including Biologically Inspired Memory Materials and Methods , 2022 .