Anhydrous mono- and dinuclear tris(quinolinolate) complexes of scandium: the missing structures of rare earth metal 8-quinolinolates.

The first monomeric anhydrous scandium tris(8-quinolinolate) complex 1 with the 2-amino-8-quinolinolate ligands and the Sc(2)Q(6) dinuclear complex 2 with the unsubstituted 8-quinolinolate ligands have been synthesized and characterized by X-ray analysis and DFT calculations. The intramolecular hydrogen bonds appear to be responsible for the unique monomeric structure of complex 1. The DFT-based analysis of the electron density topology reveals the (3,-1) critical points corresponding to the O···H and N···H bonds. The two scandium atoms in compound 2 are inequivalent due to different ligand surroundings. They are coordinated by seven (5O, 2N) and eight (4O, 4N) ligand atoms. The increase in the coordination number is accompanied by a decrease in the positive charge of the metal atom as evidenced by the DFT calculations.

[1]  L. Weng,et al.  X‐Ray Structure of 8‐Quinolinolato Lanthanide Complex: (8‐Quinolinolato) bis (2,6‐di‐ tert ‐butyl‐4‐methylphenoxo) samarium , 2010 .

[2]  M. A. Katkova,et al.  New trends in design of electroluminescent rare earth metallo-complexes for OLEDs. , 2010, Dalton transactions.

[3]  M. A. Katkova,et al.  Synthesis, structures, and electroluminescent properties of scandium N,O-chelated complexes toward near-white organic light-emitting diodes. , 2010, Inorganic chemistry.

[4]  M. A. Katkova,et al.  Scandium 2-mercaptobenzothiazolate: Synthesis, structure and electroluminescent properties , 2010 .

[5]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[6]  M. A. Katkova,et al.  2-Mercaptobenzothiazolate complexes of rare earth metals and their electroluminescent properties , 2009 .

[7]  M. A. Katkova,et al.  New type of arrangement of rare-earth quinolinolate. Molecular structure of scandium 2-methyl-8-quinolinolate , 2009 .

[8]  M. A. Katkova,et al.  Rare-earth metal 8-hydroxyquinolinate complexes as materials for organic light-emitting diodes , 2008 .

[9]  M. A. Katkova,et al.  Electroluminescent characteristics of scandium and yttrium 8-quinolinolates , 2008 .

[10]  A. Caneschi,et al.  Synthesis, Structure, Spectroscopic Studies and Magnetic Properties of the Tetrakis(5,7-dichloro-8-quinolinolato)gadolinium(III) Complex , 2008 .

[11]  F. Artizzu,et al.  New Insights on Near‐Infrared Emitters Based on Er‐quinolinolate Complexes: Synthesis, Characterization, Structural, and Photophysical Properties , 2007 .

[12]  K. V. Hecke,et al.  Rare-earth nitroquinolinates: Visible-light-sensitizable near-infrared emitters in aqueous solution , 2007 .

[13]  G. Deacon,et al.  A rare earth alloy as a synthetic reagent: contrasting homometallic rare earth and heterobimetallic outcomes , 2006 .

[14]  G. Deacon,et al.  The Synthesis of a Homoleptic Lanthanoid Complex of the 8-Quinolinolate Ion Directly from the Metal† , 2005 .

[15]  M. A. Katkova,et al.  Efficient synthetic route to anhydrous mononuclear tris(8-quinolinolato)lanthanoid complexes for organic light-emitting devices , 2005 .

[16]  F. Artizzu,et al.  Structure and emission properties of Er3Q9 (Q = 8-quinolinolate). , 2005, Inorganic chemistry.

[17]  K. Binnemans,et al.  Rare-earth quinolinates: infrared-emitting molecular materials with a rich structural chemistry. , 2004, Inorganic chemistry.

[18]  K. Cheah,et al.  Reactivity of aqua coordinated monoporphyrinate lanthanide complexes: synthetic, structural and photoluminescent studies of lanthanide porphyrinate dimers. , 2004, Dalton transactions.

[19]  G. Deacon,et al.  Novel Heterobimetallic Neodymium/Calcium 8-Quinolinolate Complexes Prepared Directly From the Metals , 2004 .

[20]  K. Driesen,et al.  Halogen substitution as an efficient tool to increase the near-infrared photoluminescence intensity of erbium(III) quinolinates in non-deuterated DMSO , 2003 .

[21]  Junji Kido,et al.  Organo lanthanide metal complexes for electroluminescent materials. , 2002, Chemical reviews.

[22]  W. Gillin,et al.  Electroluminescence of organolanthanide based organic light emitting diodes , 2001 .

[23]  W. Gillin,et al.  980 nm electroluminescence from ytterbium tris(8-hydroxyquinoline) , 2001 .

[24]  W. Gillin,et al.  Infra-red and visible electroluminescence from ErQ based OLEDs , 2000 .

[25]  W. Gillin,et al.  1.54 μm electroluminescence from erbium (III) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes , 1999 .

[26]  Richard J. Curry,et al.  Erbium (III) tris(8-hydroxyquinoline) (ErQ): A potential material for silicon compatible 1.5 μm emitters , 1999 .

[27]  P. M. Zorky,et al.  New applications of van der Waals radii in chemistry , 1995 .

[28]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[29]  F. A. Hart,et al.  Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides , 1973 .