Hover Test of Mach-Scale Active Twist Rotor Using Piezo-Bending-Torsion Actuators

The active twist rotor investigated in this research is a derivative of the previously developed smart-activeblade-tip (SABT) rotor. On the SABT rotor, the blade tips are independently pitched, with respect to the main blade. A novel piezo-induced bending ‐torsion coupled actuator beam, located spanwise in the hollow midcell of the main rotor blade, is used to actuate the blade tip. When the blade tip is locked to the main blade, the actuator beam twists the entire blade. A Mach scale rotor with a 1.542 m diameter was hover tested, open loop, to evaluate the control authority for vibration reduction. A nonrotating tip-twist amplitude of 0.78 deg was achieved (below resonance, 150 V rms ). Analysis indicates that no signie cant twist actuation degradation is expected at full rotor speed. In 2000-rpm hover (tip Mach 0.47 ), at 8-deg collective, and for a single blade actuation of 150 V rms at 1, 2, and 3 per revolution, respectively, the measured oscillatory thrust coefe cients are 1 :4 £ 10 3 , 0:55 £ 10 3 , and 0:7 £ 10 3 . The corresponding e nite element model estimated blade twist amplitudes are 0.8, 1.0, and 1.9 deg. Good correlation of the predicted and measured rotor thrust was achieved up to 3 per revolution. The hover test demonstrates the potential of the active twist rotor system using an internal actuation beam and warrants further research for a dedicated next-generation model-scale design and full-scale feasibility study.

[1]  Carlos E. S. Cesnik,et al.  Modeling, design, and testing of the NASA/Army/MIT active twist rotor prototype blade , 1999 .

[2]  Nesbitt W. Hagood,et al.  Material characterization of Active Fiber Composite actuators for active twist helicopter rotor blade applications , 2000 .

[3]  Heli Div.,et al.  Rotor Design Using Smart Materials to Actively Twist Blades , 1996 .

[4]  N. Hagood,et al.  Anisotropic Actuation with Piezoelectric Fiber Composites , 1995 .

[5]  Inderjit Chopra,et al.  Wind Tunnel Test of a Smart Rotor Model with Individual Blade Twist Control , 1997 .

[6]  Ron Barrett,et al.  Design, development, and testing of a mini solid state adaptive rotor , 1997, Smart Structures.

[7]  Friedrich K Straub,et al.  A feasibility study of using smart materials for rotor control , 1993 .

[8]  Nesbitt W. Hagood,et al.  Design and manufacture of an integral twist-actuated rotor blade , 1997 .

[9]  Nesbitt W. Hagood,et al.  Characterization of interdigitated electrode piezoelectric fiber composites under high electrical and mechanical loading , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  Inderjit Chopra,et al.  Wind tunnel testing of a smart rotor with induced-strain actuation of blade twist , 1996 .

[11]  Carlos E. S. Cesnik,et al.  HOVER TESTING OF THE NASA/ARMY/MIT ACTIVE TWIST ROTOR PROTOTYPE BLADE , 2000 .

[12]  S. Hall,et al.  Closed-loop vibration control experiments on a rotor with blade mounted actuation , 2000 .

[13]  Friedrich K. Straub,et al.  Design and testing of a double X-frame piezoelectric actuator , 2000, Smart Structures.

[14]  Inderjit Chopra,et al.  Wind Tunnel Testing Of A Mach-Scaled Active Rotor With Trailing-Edge Flaps , 2001 .

[15]  Victor Giurgiutiu,et al.  RECENT ADVANCES IN SMART-MATERIAL ROTOR CONTROL ACTUATION. , 2000 .

[16]  David B. Domzalski,et al.  Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades , 2001 .

[17]  Nesbitt W. Hagood,et al.  Preliminary Mach-scale hover testing of an integral twist-actuated rotor blade , 1998, Smart Structures.

[18]  Andreas Paul Friedrich Bernhard Smart helicopter rotor with active blade tips , 2000 .

[19]  Inderjit Chopra,et al.  Mach-Scale Design of a Rotor-Model with Active Blade Tips , 1999 .

[20]  Ron Barrett,et al.  All-moving active aerodynamic surface research , 1995 .

[21]  John P. Rodgers,et al.  Development of an integral twist-actuated rotor blade for individual blade control , 1999 .

[22]  Friedrich K Straub,et al.  Design of a smart material actuator for rotor control , 1997 .

[23]  Robert A. Ormiston,et al.  An Electromagnetic Actuator For Individual Blade Control , 2000 .

[24]  Robert G. Loewy,et al.  REVIEW ARTICLE: Recent developments in smart structures with aeronautical applications , 1997 .

[25]  Inderjit Chopra,et al.  Trailing Edge Flap Activated by a Piezo-Induced Bending-Torsion Coupled Beam , 1999 .

[26]  Inderjit Chopra,et al.  Wind tunnel testing of a Mach-scaled rotor model with trailing-edge flaps , 2000 .

[27]  Matthew L. Wilbur,et al.  Dynamic response of active twist rotor blades , 2000 .

[28]  Inderjit Chopra,et al.  Hover testing of an active rotor blade tip and structural analysis of the actuator beam , 1998 .

[29]  Inderjit Chopra,et al.  Hover Testing of Active Rotor Blade-Tips Using a Piezo-Induced Bending-Torsion Coupled Beam , 1998 .

[30]  Carlos E. S. Cesnik,et al.  Vibratory loads reduction testing of the NASA/Army/MIT active twist rotor , 2001 .

[31]  Inderjit Chopra,et al.  Hover Testing of Smart Rotor with Induced-Strain Actuation of Blade Twist , 1997 .

[32]  Elmar Breitbach,et al.  Adaptive Rotor Blade for Vibration Reduction , 2000 .

[33]  Paul H. Mirick,et al.  Low-cost piezocomposite actuator for structural control applications , 2000, Smart Structures.

[34]  Robert A. Ormiston,et al.  Hover Testing of a Small-Scale Rotor with On-Blade Elevons , 2001 .

[35]  Carlos E. S. Cesnik,et al.  On the twist performance of a multiple-cell active helicopter blade , 2001 .

[36]  Nesbitt W. Hagood,et al.  Manufacture of adaptive composite plates incorporating piezoelectric fiber composite plies , 1995 .

[37]  Holger Hanselka,et al.  Calculations and experimental resulte of the adaptive twist control concept of reduced helicopter vibrations and noise emissions.Proceedings: The main sources of helicopter vibration and noise emissions and adaptive concepts to reduce them. , 1996 .

[38]  Inderjit Chopra,et al.  Analysis of a bending-torsion coupled actuator for a smart rotor with active blade tips , 2001 .

[39]  A. Dean Jacot,et al.  Smart structures for rotorcraft control (SSRC) II , 1998, Smart Structures.

[40]  Inderjit Chopra,et al.  Structural modeling of composite beams with induced-strain actuators , 1993 .

[41]  Eric Frederick Prechtl,et al.  Design and implementation of a piezoelectric servo-flap actuation system for helicopter rotor individual blade control , 2000 .

[42]  Inderjit Chopra,et al.  Development and validation of a refined piezostack-actuated trailing-edge flap actuator for a helicopter rotor , 1999, Smart Structures.

[43]  Richard C. Bussom,et al.  The Design Evolution of an Active Materials Rotor , 2001 .

[44]  Inderjit Chopra,et al.  Status of Application of Smart Structures Technology to Rotorcraft Systems , 2000 .

[45]  Robert A. Ormiston,et al.  SMALL-SCALE ROTOR EXPERIMENTS WITH ON-BLADE ELEVONS TO REDUCE BLADE VIBRATORY LOADS IN FORWARD FLIGHT , 1998 .

[46]  Ron Barrett,et al.  Adaptive flight control surfaces, wings, rotors, and active aerodynamics , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.