Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol : Influence on activity, selectivity and stability

[1]  J. Casas,et al.  Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts , 2007 .

[2]  J. Casas,et al.  Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst , 2006 .

[3]  F. García-Ochoa,et al.  Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media , 2006 .

[4]  J. Casas,et al.  Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst , 2006 .

[5]  F. Stüber,et al.  Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst , 2005 .

[6]  F. García-Ochoa,et al.  Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization , 2005 .

[7]  F. Stüber,et al.  Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater , 2005 .

[8]  J. Casas,et al.  Evolution of toxicity upon wet catalytic oxidation of phenol. , 2004, Environmental science & technology.

[9]  Rafael García,et al.  Catalytic wet air oxidation of aqueous ammonia with activated carbon , 2003 .

[10]  F. García-Ochoa,et al.  Route of the catalytic oxidation of phenol in aqueous phase , 2002 .

[11]  J. J. Rodríguez,et al.  Influence of Surface Composition and Pore Structure on Cr(III) Adsorption onto Activated Carbons , 2002 .

[12]  J. Figueiredo,et al.  Properties of Carbon-Supported Platinum Catalysts: Role of Carbon Surface Sites , 2002 .

[13]  P. Plucinski,et al.  Copper Oxide Mounted on Activated Carbon as Catalyst for Wet Air Oxidation of Aqueous Phenol. 1. Kinetic and Mechanistic Approaches , 2002 .

[14]  S. Biniak,et al.  The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon , 2002 .

[15]  J. Figueiredo,et al.  Catalytic wet air oxidation of butyric acid solutions using carbon-supported iridium catalysts , 2002 .

[16]  F. Stüber,et al.  Catalytic wet air oxidation of phenol using active carbon: performance of discontinuous and continuous reactors , 2001 .

[17]  S. Christoskova,et al.  Low-temperature iron-modified cobalt oxide system: Part I. Preparation and characterisation , 2001 .

[18]  J. Figueiredo,et al.  Catalytic wet air oxidation of low molecular weight carboxylic acids using a carbon supported platinum catalyst , 2000 .

[19]  P. Yue,et al.  Copper/activated carbon as catalyst for organic wastewater treatment , 1999 .

[20]  A. Fortuny,et al.  Three-phase reactors for environmental remediation: catalytic wet oxidation of phenol using active carbon , 1999 .

[21]  J. Figueiredo,et al.  Modification of the surface chemistry of activated carbons , 1999 .

[22]  J. Hanika,et al.  Catalytic wet oxidation of substituted phenols in the trickle bed reactor , 1998 .

[23]  M. Sheintuch,et al.  Abatement of pollutants by adsorption and oxidative catalytic regeneration , 1997 .

[24]  F. Carrasco-Marín,et al.  The creation of acid carbon surfaces by treatment with (NH4)2S2O8 , 1997 .

[25]  J. Atwater,et al.  Aqueous phase heterogeneous catalytic oxidation of trichloroethylene , 1996 .

[26]  N. Abuzaid,et al.  Carbon-Catalyzed Oxidative Coupling of Phenolic Compounds , 1996, Bulletin of environmental contamination and toxicology.

[27]  J. Levec,et al.  Catalytic oxidation of aqueous solutions of organics. An effective method for removal of toxic pollutants from waste waters , 1995 .

[28]  M. Suidan,et al.  Oxidative coupling of phenols on activated carbon. Impact on adsorption equilibrium , 1993 .

[29]  R. Brand Improving the validity of hyperfine field distributions from magnetic alloys , 1987 .

[30]  V. Kraan Mössbauer effect studies of surface ions of ultrafine α‐Fe2O3 particles , 1973 .

[31]  H. Bömmel,et al.  SOME PROPERTIES OF SUPPORTED SMALL $alpha$-Fe$sub 2$O$sub 3$ PARTICLES DETERMINED WITH THE MOESSBAUER EFFECT , 1966 .