Adaptation to biological motion leads to a motion and a form aftereffect

Recent models have proposed a two-stage process of biological motion recognition. First, template or snapshot neurons estimate the body form. Then, motion is estimated from body form change. This predicts separate aftereffects for body form and body motion. We tested this prediction. Observers viewing leftward- or rightward-facing point-light walkers that walked forward or backward subsequently experienced oppositely directed aftereffects in stimuli ambiguous in the facing or the walking direction. These aftereffects did not originate from adaptation to the motion of the individual light points, because they occurred for limited-lifetime stimuli that restrict local motion. They also occurred when the adaptor displayed a random sequence of body postures that did not induce the walking motion percept. We thus conclude that biological motion gives rise to separate form and motion aftereffects and that body form representations are involved in biological motion perception.

[1]  G. Mather,et al.  The motion aftereffect reloaded , 2008, Trends in Cognitive Sciences.

[2]  M. Lappe,et al.  Perception of biological motion from limited-lifetime stimuli , 2006, Perception & psychophysics.

[3]  Aina Puce,et al.  Configural Processing of Biological Motion in Human Superior Temporal Sulcus , 2005, The Journal of Neuroscience.

[4]  Heinrich H Bülthoff,et al.  A Chimeric Point-Light Walker , 2003, Perception.

[5]  G Johansson,et al.  Spatio-temporal differentiation and integration in visual motion perception , 1976, Psychological research.

[6]  Russell Reid,et al.  Snap! Recognising Implicit Actions in Static Point-Light Displays , 2009, Perception.

[7]  M. Lappe,et al.  Visual areas involved in the perception of human movement from dynamic form analysis , 2005, Neuroreport.

[8]  Antonino Casile,et al.  Critical features for the recognition of biological motion. , 2005, Journal of vision.

[9]  David C. Burr,et al.  Seeing biological motion , 1998, Nature.

[10]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[11]  John A. Greenwood,et al.  Tuning properties of radial phantom motion aftereffects , 2004, Vision Research.

[12]  R. Snowden,et al.  Phantom motion aftereffects – evidence of detectors for the analysis of optic flow , 1997, Current Biology.

[13]  K. Hiraki,et al.  The relative importance of spatial versus temporal structure in the perception of biological motion: An event-related potential study , 2006, Cognition.

[14]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[15]  C. Clifford,et al.  Pulling Faces: An Investigation of the Face-Distortion Aftereffect , 2003, Perception.

[16]  N. Kanwisher,et al.  The Human Body , 2001 .

[17]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[18]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[19]  Alan C. Evans,et al.  Specific Involvement of Human Parietal Systems and the Amygdala in the Perception of Biological Motion , 1996, The Journal of Neuroscience.

[20]  N. Troje,et al.  The Inversion Effect in Biological Motion Perception: Evidence for a “Life Detector”? , 2006, Current Biology.

[21]  Colin W G Clifford,et al.  About Turn , 2009, Psychological science.

[22]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  J. Lange,et al.  Visual perception of biological motion by form: a template-matching analysis. , 2006, Journal of vision.

[24]  Markus Lappe,et al.  The role of spatial and temporal information in biological motion perception , 2008, Advances in cognitive psychology.

[25]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[26]  J A Beintema,et al.  Perception of biological motion without local image motion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[28]  M. Shiffrar,et al.  Subconfigurations of the human form in the perception of biological motion displays. , 1999, Acta psychologica.

[29]  B Moulden,et al.  After-effects and the integration of patterns of neural activity within a channel. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  M. Hershenson Phantom spiral aftereffect: Evidence for global mechanisms in perception , 1984 .

[31]  J. Cutting Coding Theory Adapted to Gait Perception , 1981 .

[32]  G. Mather,et al.  Low-level visual processing of biological motion , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Randolph Blake,et al.  Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth , 2010, The Journal of Neuroscience.

[34]  W. Dittrich Action Categories and the Perception of Biological Motion , 1993, Perception.

[35]  Joris Vangeneugden,et al.  Distinct Mechanisms for Coding of Visual Actions in Macaque Temporal Cortex , 2011, The Journal of Neuroscience.

[36]  J. Lange,et al.  A Model of Biological Motion Perception from Configural Form Cues , 2006, The Journal of Neuroscience.

[37]  Maurizio Corbetta,et al.  Is the extrastriate body area involved in motor actions? , 2005, Nature Neuroscience.

[38]  E. Vatikiotis-Bateson,et al.  Perceiving Biological Motion: Dissociating Visible Speech from Walking , 2003, Journal of Cognitive Neuroscience.

[39]  K. Nakayama,et al.  Adaptation aftereffects in the perception of gender from biological motion. , 2006, Journal of vision.

[40]  M. Webster,et al.  Visual adaptation: Neural, psychological and computational aspects , 2007, Vision Research.

[41]  D. D. Hoffman,et al.  The interpretation of biological motion , 1982, Biological Cybernetics.

[42]  R. Blake,et al.  Brain Areas Active during Visual Perception of Biological Motion , 2002, Neuron.

[43]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[44]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[45]  P. Mazzoni,et al.  Cross-fixation transfer of motion aftereffects with expansion motion , 2006, Vision Research.

[46]  Mark W. Greenlee,et al.  Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas , 2008, NeuroImage.

[47]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Jake K. Aggarwal,et al.  Structure from Motion of Rigid and Jointed Objects , 1981, Artif. Intell..

[49]  Mary Hayhoe,et al.  Gaze patterns in search reflect learnt environmental probabilities and rewards , 2010 .

[50]  M. Webster,et al.  Adaptation to natural facial categories , 2002 .

[51]  R. Vogels,et al.  Functional differentiation of macaque visual temporal cortical neurons using a parametric action space. , 2009, Cerebral cortex.