Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane

[1]  V. Galvita,et al.  Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe , 2015 .

[2]  Yuhan Sun,et al.  Coking and deactivation of a mesoporous Ni–CaO–ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions , 2015 .

[3]  A. Pintar,et al.  Insights into durable NiCo catalysts on β-SiC/CeZrO2 and γ-Al2O3/CeZrO2 advanced supports prepared from facile methods for CH4–CO2 dry reforming , 2015 .

[4]  Yuhan Sun,et al.  Effect of pore geometries on the catalytic properties of NiO–Al2O3 catalysts in CO2 reforming of methane , 2015 .

[5]  Lidong Li,et al.  Synergetic Effects Leading to Coke‐Resistant NiCo Bimetallic Catalysts for Dry Reforming of Methane , 2015 .

[6]  Jianjun Liu,et al.  Ni–Co/Al2O3 Bimetallic Catalysts for CH4 Steam Reforming: Elucidating the Role of Co for Improving Coke Resistance , 2014 .

[7]  G. Pantaleo,et al.  Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects , 2014 .

[8]  Yuhan Sun,et al.  The Properties of Individual Carbon Residuals and Their Influence on The Deactivation of Ni–CaO–ZrO2 Catalysts in CH4 Dry Reforming , 2014 .

[9]  G. Hutchings,et al.  Catalytic aromatization of methane. , 2014, Chemical Society reviews.

[10]  K. Tomishige,et al.  Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas , 2013 .

[11]  Yuhan Sun,et al.  The bi-functional mechanism of CH4 dry reforming over a Ni–CaO–ZrO2 catalyst: further evidence via the identification of the active sites and kinetic studies , 2013 .

[12]  Liyi Shi,et al.  Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. , 2013, Chemical communications.

[13]  P. Roy,et al.  Synthesis of mesoporous bimetallic Ni–Cu catalysts supported over ZrO2 by a homogenous urea coprecipitation method for catalytic steam reforming of ethanol , 2013 .

[14]  A. Singh,et al.  Synergistic Catalysis over Bimetallic Alloy Nanoparticles , 2013 .

[15]  Inmaculada Rodríguez-Ramos,et al.  Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3 , 2013 .

[16]  Xiang-Yun Guo,et al.  Synthesis of natural gas from CO methanation over SiC supported Ni–Co bimetallic catalysts , 2013 .

[17]  E. Bartolomeo,et al.  Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane , 2012 .

[18]  Tae-sun Chang,et al.  Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development , 2012, Catalysis Surveys from Asia.

[19]  J. Filho,et al.  Mesoporous catalysts for dry reforming of methane: Correlation between structure and deactivation behaviour of Ni-containing catalysts , 2012 .

[20]  Thawatchai Maneerung,et al.  CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression , 2012 .

[21]  E. Kondratenko,et al.  Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst , 2012 .

[22]  J. Filho,et al.  Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts , 2012 .

[23]  J. P. Holgado,et al.  In Situ XAS Study of Synergic Effects on Ni–Co/ZrO2 Methane Reforming Catalysts , 2012 .

[24]  Yuhan Sun,et al.  Catalytic performance and characterization of Ni-CaO-ZrO2 catalysts for dry reforming of methane , 2011 .

[25]  Leilei Xu,et al.  Carbon dioxide reforming of methane over ordered mesoporous NiO–Al2O3 composite oxides , 2011 .

[26]  L. Guczi,et al.  Methane dry reforming with CO2 on CeZr-oxide supported Ni, NiRh and NiCo catalysts prepared by sol–gel technique: Relationship between activity and coke formation , 2011 .

[27]  Qingshan Zhu,et al.  Effect of Co-Ni ratio on the activity and stability of Co-Ni bimetallic aerogel catalyst for methane Oxy-CO2 reforming , 2011 .

[28]  M. Larrubia,et al.  Improved Pt-Ni nanocatalysts for dry reforming of methane , 2010 .

[29]  Yuhan Sun,et al.  Effect of pore structure on Ni catalyst for CO2 reforming of CH4 , 2010 .

[30]  M. Illán-Gómez,et al.  Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane , 2009 .

[31]  Y. Hu Solid-solution catalysts for CO2 reforming of methane , 2009 .

[32]  Jihui Wang,et al.  Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts , 2009 .

[33]  A. Dalai,et al.  Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 , 2008 .

[34]  Xinmei Liu,et al.  CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts , 2008 .

[35]  Prashant Kumar,et al.  Nickel-Based Ceria, Zirconia, and Ceria–Zirconia Catalytic Systems for Low-Temperature Carbon Dioxide Reforming of Methane , 2007 .

[36]  A. Dalai,et al.  Development of stable bimetallic catalysts for carbon dioxide reforming of methane , 2007 .

[37]  Brian F. G. Johnson,et al.  Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel–cobalt catalysts , 2007 .

[38]  A. Adesina,et al.  Post-mortem characterization of coke-induced deactivated alumina-supported Co–Ni catalysts , 2006 .

[39]  K. Kunimori,et al.  Additive effect of noble metals on NiO-MgO solid solution in oxidative steam reforming of methane under atmospheric and pressurized conditions , 2006 .

[40]  M. Goldwasser,et al.  New Co-Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT-MM1 mesoporous material and a perovskite-like oxide precursor LaCo0.4Ni0.6O3 , 2005 .

[41]  K. Takanabe,et al.  Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane , 2005 .

[42]  X. Verykios Catalytic dry reforming of natural gas for the production of chemicals and hydrogen , 2003 .

[43]  E. Ruckenstein,et al.  BINARY MgO-BASED SOLID SOLUTION CATALYSTS FOR METHANE CONVERSION TO SYNGAS , 2002 .

[44]  J. Nørskov,et al.  Steam Reforming and Graphite Formation on Ni Catalysts , 2002 .

[45]  K. Omata,et al.  Reduction of Carbon Dioxide by Methane with Ni-on-MgO-CaO Containing Catalysts , 1992 .

[46]  R. Prins,et al.  Characterization of supported cobalt and cobalt-rhodium catalysts : II. Temperature-Programmed Reduction (TPR) and Oxidation (TPO) of Co/TiO2 and Co---Rh/TiO2 , 2003 .