An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions

We are interested in solving time dependent problems using domain decomposition methods. In the classical approach, one discretizes first the time dimension and then one solves a sequence of steady problems by a domain decomposition method. In this paper, we treat directly the time dependent problem and we study a Schwarz waveform relaxation algorithm for the convection diffusion equation in two dimensions. We introduce the operators on the interfaces which minimize the convergence rate, resulting in an efficient method: numerical results illustrate the performances and show that the corresponding algorithms converge much faster than the classical one.

[1]  Laurence Halpern,et al.  Artificial boundary conditions for the linear advection diffusion equation , 1986 .

[2]  Stéphane Lanteri,et al.  Optimized interface conditions for domain decomposition methods in fluid dynamics , 2002 .

[3]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[4]  M. Gander,et al.  Optimal Convergence for Overlapping and Non-Overlapping Schwarz Waveform Relaxation , 1999 .

[5]  R. Glowinski,et al.  Third International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1990 .

[6]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[7]  Frédéric Nataf,et al.  Domain Decomposition Methods for Fluid Dynamics , 1995 .

[8]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[9]  Laurence Halpern,et al.  Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1 , 2003 .

[10]  Caroline Japhet,et al.  Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d'Orde 2. , 1998 .

[11]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[12]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[13]  M. Gander Overlapping Schwarz Waveform Relaxation for Parabolic Problems , 1998 .

[14]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[15]  Frédéric Nataf,et al.  The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..

[16]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[17]  Frédéric Nataf,et al.  FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .