A Structural Characterization for Certifying Robinsonian Matrices

A symmetric matrix is Robinsonian if its rows and columns can be simultaneously reordered in such a way that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. The adjacency matrix of a graph is Robinsonian precisely when the graph is a unit interval graph, so that Robinsonian matrices form a matrix analogue of the class of unit interval graphs. Here we provide a structural characterization for Robinsonian matrices in terms of forbidden substructures, extending the notion of asteroidal triples to weighted graphs. This implies the known characterization of unit interval graphs and leads to an efficient algorithm for certifying that a matrix is not Robinsonian.

[1]  W. M. Flinders Petrie,et al.  Sequences in Prehistoric Remains , 1899 .

[2]  Monique Laurent,et al.  A Lex-BFS-based recognition algorithm for Robinsonian matrices , 2015, Discret. Appl. Math..

[3]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[4]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[5]  L. Hubert,et al.  Combinatorial Data Analysis , 1992 .

[6]  Dominique Fortin,et al.  An Optimal Algorithm To Recognize Robinsonian Dissimilarities , 2014, Journal of Classification.

[7]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[8]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[9]  Chun-Houh Chen,et al.  Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles , 2008, BMC Bioinformatics.

[10]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[11]  Hans-Friedrich Köhn,et al.  Branch-and-bound applications in combinatorial data analysis , 2006, Psychometrika.

[12]  Vladimir Gurvich,et al.  On Generating the Irredundant Conjunctive and Disjunctive Normal Forms of Monotone Boolean Functions , 1999, Discret. Appl. Math..

[13]  Monique Laurent,et al.  Similarity-First Search: A New Algorithm with Application to Robinsonian Matrix Recognition , 2016, SIAM J. Discret. Math..

[14]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[15]  Mohammad Taghi Hajiaghayi,et al.  A note on the Consecutive Ones Submatrix problem , 2002, Inf. Process. Lett..

[16]  Chris H. Q. Ding,et al.  Linearized cluster assignment via spectral ordering , 2004, ICML.

[17]  Frédéric Gardi,et al.  The Roberts characterization of proper and unit interval graphs , 2007, Discret. Math..

[18]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[19]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[20]  James C. Bezdek,et al.  An Efficient Formulation of the Improved Visual Assessment of Cluster Tendency (iVAT) Algorithm , 2012, IEEE Transactions on Knowledge and Data Engineering.

[21]  Sergey N. Rodin,et al.  Graphs and Genes , 1984 .

[22]  W. S. Robinson A Method for Chronologically Ordering Archaeological Deposits , 1951, American Antiquity.

[23]  Victor Chepoi,et al.  Recognition of Robinsonian dissimilarities , 1997 .

[24]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .