A lattice Boltzmann numerical approach for modelling reaction-diffusion processes in chemically and physically heterogeneous environments

Cette these propose une nouvelle methode numerique de solution des problemes de reaction-diffusion dans les milieux environnementaux. Le modele developpe considere deux processus de base: la diffusion et la reaction chimique. Le probleme general etudie reside dans le fait qu'un tres grand nombre d'equation de reactions-diffusion doit etre traite pour un meme metal M, dans une solution chimique qui contient un grand nombre de ligands et de complexes. En particulier, l'objectif specifique est de calculer le flux du metal M sur une surface ou il est consomme, tels que les sensors bioanalogiques et les micro-organismes, et d'etudier l'impact des differents complexes formes sur le flux de metal aux interfaces, dans les systemes environnementaux. Cette these propose deux codes numeriques pour calculer le flux de M: 1) MHEDYN: dans des systemes chimiquement heterogenes; 2) BIODYN: en presence d'un ligand L dans des modeles de biofilms en 3D (systeme physiquement heterogene).

[1]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[2]  Numerical Simulation of Reaction-Diffusion and Adsorption Processes in Porous Media using Lattice Boltzmann Methods with Concurrent Visualisation , 2003 .

[3]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[4]  V. Nassehi,et al.  Multiscale finite element modeling of diffusion-reaction equation using bubble functions with bilinear and triangular elements , 2007 .

[5]  J. Garcés,et al.  AGNES: a new electroanalytical technique for measuring free metal ion concentration , 2004 .

[6]  B. Chopard,et al.  Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  W. Shyy,et al.  A multi‐block lattice Boltzmann method for viscous fluid flows , 2002 .

[8]  Jacques Buffle,et al.  Complexation reactions in aquatic systems , 1988 .

[9]  Yalchin Efendiev,et al.  An adaptive local–global multiscale finite volume element method for two-phase flow simulations , 2007 .

[10]  Zhong Yijun,et al.  Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media , 2004 .

[11]  Paul Stoodley,et al.  Relation between the structure of an aerobic biofilm and transport phenomena , 1995 .

[12]  J. Lead,et al.  Determination of Diffusion Coefficients of Humic Substances by Fluorescence Correlation Spectroscopy: Role of Solution Conditions , 2000 .

[13]  L. Bieniasz Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations , 2000 .

[14]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[15]  H. P. Leeuwen,et al.  Voltammetry of metal complex systems with different diffusion coefficients of the species involved. II. Behaviour of the limiting current and its dependence. , 1987 .

[16]  S. Girimaji,et al.  Multi-block Lattice Boltzmann method: Extension to 3D and validation in turbulence , 2006 .

[17]  A. Fisher,et al.  The boundary element method: applications to steady-state voltammetric simulations within domains extending to infinity , 2001 .

[18]  Xingye Yue,et al.  Numerical methods for multiscale elliptic problems , 2006, J. Comput. Phys..

[19]  A comparison of published experimental data with a coupled lattice Boltzmann-analytic advection–diffusion method for reactive transport in porous media , 2002 .

[20]  Dieter Britz,et al.  Digital Simulation in Electrochemistry , 1981 .

[21]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[22]  Xiaoyi He,et al.  Lattice Boltzmann simulation of electrochemical systems , 2000 .

[23]  Li-Shi Luo,et al.  Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids , 1996 .

[24]  Qing Li,et al.  LBGK Simulations of Turing Patterns in CIMA Model , 2001, J. Sci. Comput..

[25]  J. Heyrovský Principles of polarography , 1966 .

[26]  J. Galceran,et al.  Voltammetric lability of metal complexes at spherical microelectrodes with various radii. , 2001 .

[27]  Jacques Buffle,et al.  Dynamic speciation analysis and bioavailability of metals in aquatic systems. , 2005, Environmental science & technology.

[28]  J. Shadid,et al.  Studies on the accuracy of time-integration methods for the radiation-diffusion equations , 2004 .

[29]  J. Galceran,et al.  Computing steady-state metal flux at microorganism and bioanalogical sensor interfaces in multiligand systems. A reaction layer approximation and its comparison with the rigorous solution. , 2007, Physical chemistry chemical physics : PCCP.

[30]  Montserrat Filella,et al.  Effect of physico-chemical heterogeneity of natural complexants. Part I, Voltammetry of labile metal-fulvic complexes , 1990 .

[31]  John McCloskey,et al.  Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media , 1998 .

[32]  Jacques Buffle,et al.  Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measureme , 2005 .

[33]  Josep Galceran,et al.  Lability and mobility effects on mixtures of ligands under steady-state conditions , 2003 .

[34]  J. Buffle,et al.  Chemical and Biological Regulation of Aquatic Systems , 1994 .

[35]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  M. Esteban,et al.  Voltammetry of labile metal-macromolecular systems for any ligand-to-metal ratio, including adsorption phenomena. The role of the stability constant , 1994 .

[38]  H. Lappin-Scott,et al.  Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocal microscopy. , 1997, Biotechnology and bioengineering.

[39]  G. Doolen,et al.  Diffusion in a multicomponent lattice Boltzmann equation model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Xiaoyi He,et al.  Lattice Boltzmann Method on Curvilinear Coordinates System , 1997 .

[41]  R. Altmann,et al.  Effect of physico-chemical heterogeneity of natural complexants: Part II. Buffering action and role of their background sites , 1990 .

[42]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[43]  C. R. Bell,et al.  Microbial Biosystems: New Frontiers , 2000 .

[44]  W. Stumm Aquatic chemical kinetics : reaction rates of processes in natural waters , 1990 .

[45]  H. P. Leeuwen,et al.  Physicochemical kinetics and transport at the biointerface: setting the stage , 2004 .

[46]  H. P. van Leeuwen,et al.  Voltammetry of metal complex systems with different diffusion coefficients of the species involved. I. Analytical approaches to the limiting current. , 1987 .

[47]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[48]  Pradeep P. Bhat,et al.  Multiscale simulation of viscoelastic free surface flows , 2006 .

[49]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[50]  G. H. Brown,et al.  Techniques of Chemistry, Vol. III: Photochromism , 1973 .

[51]  Peter A. Vanrolleghem,et al.  A simplified mixed-culture biofilm model , 1999 .

[52]  J. Josserand,et al.  Finite element simulation of ion transfer reactions at a single micro-liquid ∣ liquid interface supported on a thin polymer film , 1999 .

[53]  Bastien Chopard,et al.  Cellular Automata and Lattice Boltzmann Techniques: an Approach to Model and Simulate Complex Systems , 2002, Adv. Complex Syst..

[54]  Leslaw K. Bieniasz,et al.  A fourth‐order accurate, Numerov‐type, three‐point finite‐difference discretization of electrochemical reaction‐diffusion equations on nonuniform (exponentially expanding) spatial grids in one‐dimensional space geometry , 2004, J. Comput. Chem..

[55]  Yalchin Efendiev,et al.  Multiscale finite element methods for porous media flows and their applications , 2007 .

[56]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[57]  Bastien Chopard,et al.  A mass conserving boundary condition for lattice Boltzmann models , 2003 .

[58]  Michael Junk,et al.  A finite difference interpretation of the lattice Boltzmann method , 2001 .

[59]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[60]  J. Allison,et al.  MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual , 1991 .

[61]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[62]  Bastien Chopard,et al.  Time Splitting and Grid Refinement Methods in the Lattice Boltzmann Framework for Solving a Reaction-Diffusion Process , 2006, International Conference on Computational Science.

[63]  J. Duval,et al.  Humic substances are soft and permeable: evidence from their electrophoretic mobilities. , 2005, Environmental science & technology.

[64]  Wlodek Tych,et al.  DIFS - a modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils , 2000, Environ. Model. Softw..

[65]  David J. Gavaghan,et al.  Two-dimensional implementation of the finite element method with singularity correction for diffusion limited current at an unshielded disc electrode , 1995 .

[66]  Anna T. Lawniczak,et al.  Lattice gas automata for reactive systems , 1995, comp-gas/9512001.

[67]  Montserrat Filella,et al.  Factors controlling the stability of submicron colloids in natural waters , 1993 .

[68]  K. Wilkinson,et al.  Critical Evaluation of Physicochemical Parameters and Processes for Modelling the Biological Uptake of Trace Metals in Environmental (Aquatic) Systems , 2004 .

[69]  J. Galceran,et al.  Voltammetric lability of multiligand complexes. The case of ML2 , 2004 .

[70]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[71]  George Horvai,et al.  In situ monitoring of aquatic systems : chemical analysis and speciation , 2000 .

[72]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[73]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[74]  R. Altmann,et al.  The use of differential equilibrium functions for interpretation of metal binding in complex ligand systems: Its relation to site occupation and site affinity distributions , 1988 .

[75]  W Gujer,et al.  A multispecies biofilm model , 1986, Biotechnology and bioengineering.

[76]  B. Chopard,et al.  A lattice Boltzmann model for particle transport and deposition , 1998 .

[77]  Josep Galceran,et al.  Lability of a mixture of metal complexes under steady-state planar diffusion in a finite domain. , 2006, The journal of physical chemistry. B.

[78]  Manfred Rudolph Digital simulation with the fast implicit finite difference (FIFD) algorithm part 5: Digital simulations of square wave voltammetry for any user defined electrochemical mechanism comprising first- and second-order chemical reactions , 1992 .

[79]  Manfred Krafczyk,et al.  Multiple-Relaxation-Time Lattice Boltzmann Models in 3D , 2002 .

[80]  Isaías Alonso-Mallo,et al.  Spectral-fractional step Runge-Kutta discretizations for initial boundary value problems with time dependent boundary conditions , 2004, Math. Comput..

[81]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[82]  Bastien Chopard,et al.  Two grid refinement methods in the lattice Boltzmann framework for reaction-diffusion processes in complex systems. , 2006, Physical chemistry chemical physics : PCCP.

[83]  Li-Shi Luo,et al.  Theory of the lattice Boltzmann Equation , 2022 .

[84]  Pierre Leone,et al.  Coupling a Lattice Boltzmann and a Finite Difference Scheme , 2004, International Conference on Computational Science.

[85]  Yongsheng Lian,et al.  No . 99-28 A Gas-kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction , 2022 .

[86]  S. Chen,et al.  Lattice methods and their applications to reacting systems , 1993, comp-gas/9312001.