Exploiting chordality in optimization algorithms for model predictive control

[1]  Moritz Diehl,et al.  A high-performance Riccati based solver for tree-structured quadratic programs , 2017 .

[2]  Isak Nielsen,et al.  Distributed primal–dual interior-point methods for solving tree-structured coupled convex problems using message-passing , 2017, Optim. Methods Softw..

[3]  Daniel Sarabia,et al.  An efficient distributed algorithm for multi-stage robust nonlinear predictive control , 2015, 2015 European Control Conference (ECC).

[4]  Andreas Potschka,et al.  Dual decomposition for QPs in scenario tree NMPC , 2015, 2015 European Control Conference (ECC).

[5]  Isak Nielsen,et al.  An O(log N) Parallel Algorithm for Newton Step Computation in Model Predictive Control , 2014, 1401.7882.

[6]  Manfred Morari,et al.  Efficient interior point methods for multistage problems arising in receding horizon control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[7]  E. Kerrigan,et al.  A sparse and condensed QP formulation for predictive control of LTI systems , 2012, Autom..

[8]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[9]  D. Koller,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[10]  Jacek Gondzio,et al.  Parallel interior-point solver for structured quadratic programs: Application to financial planning problems , 2007, Ann. Oper. Res..

[11]  Anders Hansson,et al.  Efficient solution of second order cone program for model predictive control , 2004 .

[12]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[13]  Anders Hansson,et al.  A primal-dual interior-point method for robust optimal control of linear discrete-time systems , 2000, IEEE Trans. Autom. Control..

[14]  L. Biegler,et al.  Large scale inequality constrained optimization and control , 1998 .

[15]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[16]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[17]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[18]  Stephen J. Wright,et al.  Applying new optimization algorithms to more predictive control , 1996 .

[19]  Eckhard Arnold,et al.  An SQP-type solution method for constrained discrete-time optimal control problems , 1994 .

[20]  Marc C. Steinbach,et al.  A structured interior point SQP method for nonlinear optimal control problems , 1994 .

[21]  Stephen J. Wright Interior point methods for optimal control of discrete time systems , 1993 .

[22]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[23]  Torkel Glad,et al.  A Method for State and Control Constrained Linear Quadratic Control Problems , 1984 .

[24]  E. Klintberg,et al.  Structure exploiting optimization methods for model predictive control , 2017 .

[25]  Isak Nielsen,et al.  Structure-Exploiting Numerical Algorithms for Optimal Control , 2017 .

[26]  Daniel Axehill,et al.  Convex relaxations for mixed integer predictive control , 2010, Autom..

[27]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[28]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[29]  John Bagterp Jørgensen,et al.  Moving Horizon Estimation and Control , 2004 .

[30]  Stephen P. Boyd,et al.  ROBUST LINEAR PROGRAMMING AND OPTIMAL CONTROL , 2002 .

[31]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[32]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .