A simple descriptor for energetics at fcc-bcc metal interfaces

[1]  Lifang Hu,et al.  Intermetallic formation and mechanical properties of Ni-Ti diffusion couples , 2017 .

[2]  M. Zhong,et al.  Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining , 2017 .

[3]  I. Bakó,et al.  Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst: A DFT study , 2016 .

[4]  Jianyu Zhang,et al.  Strengthening effects of twin interface in Cu/Ni multilayer thin films – A molecular dynamics study , 2016 .

[5]  X. Miao,et al.  Effect of metal-to-metal interface states on the electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal , 2016 .

[6]  Weiguo Li,et al.  The Adhesive Properties of Coherent and Semicoherent NiAl/V Interfaces Within the Peierls-Nabarro Model , 2016 .

[7]  R. Iglesias,et al.  Energetic analysis of He and monovacancies in Cu/W metallic interfaces , 2016 .

[8]  Jijun Zhao,et al.  Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  B. Tolaminejad,et al.  Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding , 2015 .

[10]  Hyoung-Seop Kim,et al.  Effect of the interfacial condition on the microtexture near the interface of Al/Cu composites during multi-pass caliber rolling , 2015 .

[11]  M. Zikry,et al.  Orientation relationships between coherent interfaces in hcp–fcc systems subjected to high strain-rate deformation and fracture modes , 2015 .

[12]  S. Hussain,et al.  Atomic and electronic structure of the TiN/MgO interface from first principles , 2015 .

[13]  Kesong Yang,et al.  Interface Energetics and Charge Carrier Density Amplification by Sn-Doping in LaAlO3/SrTiO3 Heterostructure. , 2015, ACS applied materials & interfaces.

[14]  P. O. Bedolla,et al.  Adhesion and material transfer between contacting Al and TiN surfaces from first principles , 2015, 1504.06192.

[15]  J. Das,et al.  Structure of Cr monolayer on Ag(001): A buried two-dimensional c (2 ×2 ) antiferromagnet , 2015 .

[16]  Shaoqing Wang,et al.  Surface energy and work function of fcc and bcc crystals: Density functional study , 2014 .

[17]  B. Johansson,et al.  Magnetic effect on the interfacial energy of the Ni(1 1 1)/Cr(1 1 0) interface , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  B. Johansson,et al.  First-principles study of fcc-Ag/bcc-Fe interfaces , 2013 .

[19]  Taisuke Ozaki,et al.  First-principles study of interface structure and energy of Fe/NbC , 2013 .

[20]  Pil-Ryung Cha,et al.  First-Principles Study of the Interfaces between Fe and Transition Metal Carbides , 2013 .

[21]  I. Baraille,et al.  First principles calculations of solid–solid interfaces: an application to conversion materials for lithium-ion batteries , 2012 .

[22]  A. S. Martins,et al.  Energy of Ni/Ni3Al interface: A temperature-dependent theoretical study , 2012, 1402.1615.

[23]  David Holec,et al.  Surface energies of AlN allotropes from first principles , 2012, Scripta materialia.

[24]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[25]  Dan H. R. Fors,et al.  Theoretical investigation of moderate misfit and interface energetics in the Fe/VN system , 2010 .

[26]  K. Zhao,et al.  First principles study of interface structure and electronic property of Au/SrTiO(3)(001) , 2010 .

[27]  W. Jung,et al.  Ab initio calculation of interfacial energies between transition metal carbides and fcc iron , 2010 .

[28]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  G. Henkelman,et al.  Charge redistribution in core-shell nanoparticles to promote oxygen reduction. , 2009, The Journal of chemical physics.

[30]  E. Kozeschnik,et al.  Generalized Nearest-Neighbor Broken-Bond Analysis of Randomly Oriented Coherent Interfaces in Multicomponent Fcc and Bcc Structures , 2009 .

[31]  Nicola Marzari,et al.  Surface energies, work functions, and surface relaxations of low index metallic surfaces from first principles , 2008, 0801.1077.

[32]  D. Waldron,et al.  Ab initio giant magnetoresistance and current-induced torques in Cr/Au/Cr multilayers , 2006, cond-mat/0611599.

[33]  H. Ye,et al.  Theoretical studies of solid-solid interfaces , 2006 .

[34]  R. Watts,et al.  First-principles study of metallic iron interfaces , 2002 .

[35]  Peter Gumbsch,et al.  An ab initio study of the cleavage anisotropy in silicon , 2000 .

[36]  V. Fiorentini,et al.  Extracting convergent surface energies from slab calculations , 1996, cond-mat/9610046.

[37]  A. Depristo,et al.  The definition and calculation of interfacial energies for thin films , 1994 .

[38]  Kern,et al.  Monolayer-confined mixing at the Ag-Pt(111) interface. , 1993, Physical review letters.

[39]  F. Gautier,et al.  Adhesion of transition metals: energies and thin film deposition: An electronic approach , 1991 .

[40]  Fu,et al.  Prediction of strongly enhanced two-dimensional ferromagnetic moments on metallic overlayers, interfaces, and superlattices. , 1985, Physical review letters.

[41]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[42]  L. Dobrzynski,et al.  Simple self-consistent theory of adhesion at a bimetallic interface , 1974 .