Response of an oscillatory differential delay equation to a periodic stimulus

[1]  A. R. Humphries,et al.  Dynamics of a Mathematical Hematopoietic Stem-Cell Population Model , 2017, SIAM J. Appl. Dyn. Syst..

[2]  A. R. Humphries,et al.  Normal and pathological dynamics of platelets in humans , 2016, Journal of mathematical biology.

[3]  A. R. Humphries,et al.  A Mathematical Model of Granulopoiesis Incorporating the Negative Feedback Dynamics and Kinetics of G-CSF/Neutrophil Binding and Internalization , 2015, Bulletin of mathematical biology.

[4]  A. R. Humphries,et al.  Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: Mathematical modelling guides dose optimisation to minimise neutropenia. , 2015, Journal of theoretical biology.

[5]  M. Mackey,et al.  Response of an oscillatory differential delay equation to a single stimulus , 2015, Journal of mathematical biology.

[6]  Dimitri Breda,et al.  Approximating Lyapunov exponents and Sacker–Sell spectrum for retarded functional differential equations , 2014, Numerische Mathematik.

[7]  M. Piotrowska,et al.  Existence and stability of oscillating solutions for a class of delay differential equations , 2013 .

[8]  Jinzhi Lei,et al.  Neutrophil dynamics after chemotherapy and G-CSF: the role of pharmacokinetics in shaping the response. , 2012, Journal of theoretical biology.

[9]  Kiyoshi Kotani,et al.  Adjoint method provides phase response functions for delay-induced oscillations. , 2012, Physical review letters.

[10]  Kestutis Pyragas,et al.  Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems , 2012 .

[11]  Jinzhi Lei,et al.  Neutrophil dynamics in response to chemotherapy and G-CSF. , 2012, Journal of theoretical biology.

[12]  Michael C Mackey,et al.  A mathematical model of hematopoiesis--I. Periodic chronic myelogenous leukemia. , 2005, Journal of theoretical biology.

[13]  Michael C Mackey,et al.  A mathematical model of hematopoiesis: II. Cyclical neutropenia. , 2005, Journal of theoretical biology.

[14]  L Glass,et al.  Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.

[15]  L. Shampine,et al.  Solving ODEs with MATLAB , 2003 .

[16]  A. Bellen,et al.  Numerical methods for delay differential equations , 2003 .

[17]  L Glass,et al.  Discontinuities in phase-resetting experiments. , 1984, The American journal of physiology.

[18]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[19]  Laurent Pujo-Menjouet,et al.  Blood Cell Dynamics: Half of a Century of Modelling , 2016 .

[20]  Michael C Mackey,et al.  Dynamic hematological disease: a review , 2009, Journal of mathematical biology.

[21]  B. Ronacher,et al.  Phase response curves elucidating the dynamics of coupled oscillators. , 2009, Methods in enzymology.

[22]  Anne Beuter,et al.  Nonlinear dynamics in physiology and medicine , 2003 .

[23]  T. H,et al.  Cyclical Neutropenia and the Peripheral Control of White Blood Cell Production , 1998 .

[24]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[25]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .