Deep convolutional Gaussian processes

We propose deep convolutional Gaussian processes, a deep Gaussian process architecture with convolutional structure. Œe model is a principled Bayesian framework for detecting hierarchical combinations of local features for image classi€cation. We demonstrate greatly improved image classi€cation performance compared to current Gaussian process approaches on the MNIST and CIFAR-10 datasets. In particular, we improve CIFAR-10 accuracy by over 10 percentage points.

[1]  Jaehoon Lee,et al.  Deep Neural Networks as Gaussian Processes , 2017, ICLR.

[2]  Aaron Klein,et al.  Bayesian Optimization with Robust Bayesian Neural Networks , 2016, NIPS.

[3]  Andrew Gordon Wilson,et al.  GPatt: Fast Multidimensional Pattern Extrapolation with Gaussian Processes , 2013, ArXiv.

[4]  Guodong Zhang,et al.  Differentiable Compositional Kernel Learning for Gaussian Processes , 2018, ICML.

[5]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[6]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[7]  Laurence Aitchison,et al.  Deep Convolutional Networks as shallow Gaussian Processes , 2018, ICLR.

[8]  Carl E. Rasmussen,et al.  Additive Gaussian Processes , 2011, NIPS.

[9]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[10]  P. K. Srijith,et al.  Deep Gaussian Processes with Convolutional Kernels , 2018, ArXiv.

[11]  Marc Peter Deisenroth,et al.  Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.

[12]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Juan José Murillo-Fuentes,et al.  Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo , 2018, NeurIPS.

[14]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[15]  Maurizio Filippone,et al.  Calibrating Deep Convolutional Gaussian Processes , 2018, AISTATS.

[16]  Prasanth B. Nair,et al.  Scalable Gaussian Processes with Grid-Structured Eigenfunctions (GP-GRIEF) , 2018, ICML.

[17]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[18]  Tianqi Chen,et al.  Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.

[19]  Maurizio Filippone,et al.  AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models , 2016, UAI.

[20]  Christopher K. I. Williams Computing with Infinite Networks , 1996, NIPS.

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[23]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[24]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[25]  Andrew Gordon Wilson,et al.  Bayesian GAN , 2017, NIPS.

[26]  James Hensman,et al.  Scalable Variational Gaussian Process Classification , 2014, AISTATS.

[27]  Stéphane Mallat,et al.  Understanding deep convolutional networks , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Julien Cornebise,et al.  Weight Uncertainty in Neural Networks , 2015, ArXiv.

[29]  Samuel Kaski,et al.  Non-Stationary Spectral Kernels , 2017, NIPS.

[30]  Carl E. Rasmussen,et al.  Convolutional Gaussian Processes , 2017, NIPS.

[31]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[32]  Tianqi Chen,et al.  A Complete Recipe for Stochastic Gradient MCMC , 2015, NIPS.

[33]  Alexis Boukouvalas,et al.  GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..

[34]  Ryan P. Adams,et al.  Avoiding pathologies in very deep networks , 2014, AISTATS.

[35]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[36]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[37]  Andrew Gordon Wilson,et al.  Deep Kernel Learning , 2015, AISTATS.

[38]  Andrew Gordon Wilson,et al.  Stochastic Variational Deep Kernel Learning , 2016, NIPS.

[39]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.