In vitro gene expression within membrane-free coacervate protocells.

Cell-free gene expression of a fluorescent protein (mCherry) is demonstrated within the molecularly crowded matrix of a polysaccharide/polypeptide coacervate.

[1]  Jessica L. Terrell,et al.  Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour , 2014, Nature Communications.

[2]  Dan S. Tawfik,et al.  Man-made cell-like compartments for molecular evolution , 1998, Nature Biotechnology.

[3]  Pasquale Stano,et al.  Spontaneous Encapsulation and Concentration of Biological Macromolecules in Liposomes: An Intriguing Phenomenon and Its Relevance in Origins of Life , 2014, Journal of Molecular Evolution.

[4]  Christine D. Keating,et al.  Multiphase Water-in-Oil Emulsion Droplets for Cell-Free Transcription–Translation , 2014, Langmuir : the ACS journal of surfaces and colloids.

[5]  R. Bar-Ziv,et al.  Principles of cell-free genetic circuit assembly , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Szostak,et al.  Progress toward synthetic cells. , 2014, Annual review of biochemistry.

[7]  Damien Hall,et al.  Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. , 2003, Biochimica et biophysica acta.

[8]  A. Piruska,et al.  Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate , 2013, Proceedings of the National Academy of Sciences.

[9]  Stephen Mann,et al.  Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. , 2014, Nature chemistry.

[10]  O. Urakawa,et al.  Small - , 2007 .

[11]  Tomio Ogasawara,et al.  A cell-free protein synthesis system for high-throughput proteomics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[13]  Michele Forlin,et al.  Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology. , 2013, ACS synthetic biology.

[14]  Kazufumi Hosoda,et al.  Replication of Genetic Information with Self‐Encoded Replicase in Liposomes , 2008, ChemBioChem.

[15]  Stephen Mann,et al.  Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. , 2011, Nature chemistry.

[16]  C M Dobson,et al.  Effects of macromolecular crowding on protein folding and aggregation , 1999, The EMBO journal.

[17]  Anna Whyatt,et al.  Notes and references , 1984, International Journal of Legal Information : Official Publication.

[18]  B. Paegel,et al.  Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line , 2011, Journal of the American Chemical Society.

[19]  M. Antognozzi,et al.  Small-molecule uptake in membrane-free peptide/nucleotide protocells , 2013 .

[20]  Stephen Mann,et al.  Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. , 2015, Angewandte Chemie.

[21]  Vincent Noireaux,et al.  A vesicle bioreactor as a step toward an artificial cell assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  David S. Williams,et al.  Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly. , 2014, Small.

[23]  David S. Williams,et al.  Polymer/nucleotide droplets as bio-inspired functional micro-compartments , 2012 .

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  Ryo Takeuchi,et al.  Biocontainment of genetically modified organisms by synthetic protein design , 2015, Nature.

[26]  Stephen Mann,et al.  In vitro gene expression and enzyme catalysis in bio-inorganic protocells , 2011 .

[27]  Benjamin G Davis,et al.  Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. , 2009, Nature chemistry.

[28]  Cheemeng Tan,et al.  Molecular crowding shapes gene expression in synthetic cellular nanosystems , 2013, Nature nanotechnology.

[29]  Stephen Mann,et al.  Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells , 2013, Nature Communications.

[30]  David S. Williams,et al.  Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer-nucleotide coacervate droplets. , 2012, Chemical communications.

[31]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[32]  Xin Huang,et al.  Synthetic cellularity based on non-lipid micro-compartments and protocell models. , 2014, Current opinion in chemical biology.