Coherent atomic and electronic heterostructures of single-layer MoS2.

Nanoscale heterostructures with quantum dots, nanowires, and nanosheets have opened up new routes toward advanced functionalities and implementation of novel electronic and photonic devices in reduced dimensions. Coherent and passivated heterointerfaces between electronically dissimilar materials can be typically achieved through composition or doping modulation as in GaAs/AlGaAs and Si/NiSi or heteroepitaxy of lattice matched but chemically distinct compounds. Here we report that single layers of chemically exfoliated MoS(2) consist of electronically dissimilar polymorphs that are lattice matched such that they form chemically homogeneous atomic and electronic heterostructures. High resolution scanning transmission electron microscope (STEM) imaging reveals the coexistence of metallic and semiconducting phases within the chemically homogeneous two-dimensional (2D) MoS(2) nanosheets. These results suggest potential for exploiting molecular scale electronic device designs in atomically thin 2D layers.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[3]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[4]  H. Rose,et al.  Conditions and reasons for incoherent imaging in STEM , 1996 .

[5]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[6]  R. Frindt,et al.  Li-intercalation and exfoliation of WS2 , 1996 .

[7]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[8]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[9]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[10]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[11]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[12]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[13]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[14]  R. Frindt,et al.  Scanning tunneling microscopy of single-layer MoS2 in water and butanol , 1992 .

[15]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[16]  Reshef Tenne,et al.  New Route for Stabilization of 1T-WS2 and MoS2 Phases , 2011 .

[17]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[19]  Yang,et al.  Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. , 1991, Physical review. B, Condensed matter.

[20]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[21]  M. Kanatzidis,et al.  Structure of restacked and pillared WS2: An X-ray absorption study , 2003 .

[22]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[23]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[24]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2. , 1997 .

[25]  P. Jain,et al.  (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 2009 .

[26]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[27]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[28]  M. Katsnelson,et al.  Electron scattering on microscopic corrugations in graphene , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  M. Kanatzidis,et al.  Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography , 1999 .

[30]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[31]  Yang,et al.  Structure of single-molecular-layer MoS2. , 1991, Physical review. B, Condensed matter.

[32]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[33]  Christian Kisielowski,et al.  Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. , 2011, Angewandte Chemie.

[34]  Jonathan N. Coleman,et al.  Two‐Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. , 2011 .

[35]  K. Ishizuka,et al.  A practical approach for STEM image simulation based on the FFT multislice method. , 2002, Ultramicroscopy.