Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.

[1]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[2]  L. J. Giling,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions , 2005 .

[3]  J. Rogers,et al.  Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement , 2014, Proceedings of the National Academy of Sciences.

[4]  D. Carlson,et al.  Amorphous silicon solar cells , 1977, IEEE Transactions on Electron Devices.

[5]  A. Marcelis,et al.  Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. , 2013, Nanoscale.

[6]  Harry C. Gatos,et al.  The Reaction of Germanium with Aqueous Solutions I . Dissolution Kinetics in Water Containing Dissolved Oxygen , 1958 .

[7]  Yonggang Huang,et al.  Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. , 2014, ACS nano.

[8]  Jin Han,et al.  Combination treatment with 2-methoxyestradiol overcomes bortezomib resistance of multiple myeloma cells , 2013, Experimental & Molecular Medicine.

[9]  Beth A. Cloud,et al.  Functional Role of Kallikrein 6 in Regulating Immune Cell Survival , 2011, PloS one.

[10]  Yonggang Huang,et al.  Transient, biocompatible electronics and energy harvesters based on ZnO. , 2013, Small.

[11]  M. R. Kessler,et al.  Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics , 2014 .

[12]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[13]  Xian Huang,et al.  Materials for Bioresorbable Radio Frequency Electronics , 2013, Advanced materials.

[14]  Xian Huang,et al.  High‐Performance Biodegradable/Transient Electronics on Biodegradable Polymers , 2014, Advanced materials.

[15]  O. Urakawa,et al.  Small - , 2007 .

[16]  Qian Wang,et al.  Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .

[17]  Mihai Irimia-Vladu,et al.  “Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future , 2014 .

[18]  H-S Philip Wong,et al.  Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care , 2014, Nature Communications.

[19]  Woon-Hong Yeo,et al.  Immunologic and Tissue Biocompatibility of Flexible/Stretchable Electronics and Optoelectronics , 2014, Advanced healthcare materials.

[20]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[21]  P. Harris,et al.  Nanostructured semiconductors: compatibility with biomaterials , 1997 .

[22]  E. O'Donnell,et al.  Multiparameter Flow Cytometry: Advances in High Resolution Analysis , 2013, Immune network.

[23]  John A. Rogers,et al.  Biodegradable Thin Metal Foils and Spin‐On Glass Materials for Transient Electronics , 2015 .

[24]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[25]  Mihai Irimia-Vladu,et al.  "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. , 2014, Chemical Society reviews.

[26]  Kyung Mi Lee 25th Anniversary Article: Materials for High‐Performance Biodegradable Semiconductor Devices , 2014 .

[27]  John A Rogers,et al.  Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics , 2014, Advanced materials.

[28]  Mihai Irimia-Vladu,et al.  Green and biodegradable electronics , 2012 .

[29]  Yonggang Huang,et al.  Dissolvable Metals for Transient Electronics , 2014 .

[30]  Igor R. Efimov,et al.  A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power , 2013, PloS one.

[31]  Huanyu Cheng,et al.  Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics , 2014 .

[32]  John A Rogers,et al.  Mechanisms for Hydrolysis of Silicon Nanomembranes as Used in Bioresorbable Electronics , 2015, Advanced materials.

[33]  Reza Ghodssi,et al.  MEMS materials and processes handbook , 2011 .

[34]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[35]  Theodore I. Kamins,et al.  Polycrystalline Silicon for Integrated Circuits and Displays , 2012 .

[36]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[37]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[38]  Ingrid Schmid,et al.  Live-cell assay for detection of apoptosis by dual-laser flow cytometry using Hoechst 33342 and 7-amino-actinomycin D , 2007, Nature Protocols.

[39]  P. Meredith,et al.  Electronic and optoelectronic materials and devices inspired by nature , 2013, Reports on progress in physics. Physical Society.

[40]  Zhenan Bao,et al.  Biomaterials-Based Organic Electronic Devices. , 2010, Polymer international.

[41]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.