Role of Endothelium in Doxorubicin-Induced Cardiomyopathy

[1]  J. Sowers,et al.  Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity , 2018, Circulation research.

[2]  D. S. St. Clair,et al.  Chemotherapy-Induced Tissue Injury: An Insight into the Role of Extracellular Vesicles-Mediated Oxidative Stress Responses , 2017, Antioxidants.

[3]  Emma L. Wilkinson,et al.  Statin regulated ERK5 stimulates tight junction formation and reduces permeability in human cardiac endothelial cells , 2017, Journal of cellular physiology.

[4]  S. Janssens,et al.  Folic acid reduces doxorubicin‐induced cardiomyopathy by modulating endothelial nitric oxide synthase , 2017, Journal of cellular and molecular medicine.

[5]  Y. Pommier,et al.  Roles of eukaryotic topoisomerases in transcription, replication and genomic stability , 2016, Nature Reviews Molecular Cell Biology.

[6]  Emma L. Wilkinson,et al.  Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability , 2016, Biology Open.

[7]  B. Aryal,et al.  Deficiency in Cardiolipin Reduces Doxorubicin-Induced Oxidative Stress and Mitochondrial Damage in Human B-Lymphocytes , 2016, PloS one.

[8]  B. Hasinoff,et al.  Mechanisms of Action and Reduced Cardiotoxicity of Pixantrone; a Topoisomerase II Targeting Agent with Cellular Selectivity for the Topoisomerase IIα Isoform , 2016, The Journal of Pharmacology and Experimental Therapeutics.

[9]  Daowen Wang,et al.  miR ‐ 320 a mediates doxorubicin ‐ induced cardiotoxicity by targeting , 2016 .

[10]  G. Sriram,et al.  Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions , 2015, Stem Cell Research & Therapy.

[11]  J. Edwards,et al.  Doxorubicin induced heart failure: Phenotype and molecular mechanisms , 2015, International journal of cardiology. Heart & vasculature.

[12]  G. D. De Keulenaer,et al.  Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. , 2015, European heart journal.

[13]  A. Boddy,et al.  Age-Dependent Pharmacokinetics of Doxorubicin in Children with Cancer , 2015, Clinical Pharmacokinetics.

[14]  W. Kwiatek,et al.  Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells. , 2015, Toxicology in vitro : an international journal published in association with BIBRA.

[15]  M. Barańska,et al.  Nuclear accumulation of anthracyclines in the endothelium studied by bimodal imaging: fluorescence and Raman microscopy. , 2015, The Analyst.

[16]  S. Rosenbaum,et al.  Developmental pharmacokinetics in pediatric populations. , 2014, The journal of pediatric pharmacology and therapeutics : JPPT : the official journal of PPAG.

[17]  P. Vejpongsa,et al.  Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. , 2014, Journal of the American College of Cardiology.

[18]  A. Jemal,et al.  Cancer treatment and survivorship statistics, 2014 , 2014, CA: a cancer journal for clinicians.

[19]  S. Lipshultz,et al.  Cardiotoxicity and Cardioprotection in Childhood Cancer , 2014, Acta Haematologica.

[20]  L. Morbidelli,et al.  The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. , 2013, Pharmacological research.

[21]  N. A. El-Boghdady Increased cardiac endothelin-1 and nitric oxide in adriamycin-induced acute cardiotoxicity: protective effect of Ginkgo biloba extract. , 2013, Indian journal of biochemistry & biophysics.

[22]  Haobo Li,et al.  Hyperglycemia-Induced Protein Kinase C β2 Activation Induces Diastolic Cardiac Dysfunction in Diabetic Rats by Impairing Caveolin-3 Expression and Akt/eNOS Signaling , 2013, Diabetes.

[23]  F. Burdan,et al.  Intensification of Doxorubicin-Related Oxidative Stress in the Heart by Hypothyroidism Is Not Related to the Expression of Cytochrome P450 NADPH-Reductase and Inducible Nitric Oxide Synthase, As Well As Activity of Xanthine Oxidase , 2012, Oxidative medicine and cellular longevity.

[24]  H. Crijns,et al.  Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. , 2012, Journal of molecular and cellular cardiology.

[25]  U. Förstermann,et al.  Nitric oxide synthases: regulation and function. , 2012, European heart journal.

[26]  I. Chetter,et al.  Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomised controlled trials. , 2012, Atherosclerosis.

[27]  I. Ben-Aharon,et al.  In vivo Bioimaging as a Novel Strategy to Detect Doxorubicin-Induced Damage to Gonadal Blood Vessels , 2011, PloS one.

[28]  J. Martinou,et al.  Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. , 2011, Developmental cell.

[29]  Tina Hernandez-Boussard,et al.  Doxorubicin pathways: pharmacodynamics and adverse effects , 2011, Pharmacogenetics and genomics.

[30]  Garret A. FitzGerald,et al.  Prostaglandins and Inflammation , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[31]  E. Murphy,et al.  Mechanism of Cardioprotection: What Can We Learn from Females? , 2011, Pediatric Cardiology.

[32]  T. Camenisch,et al.  ErbB signaling in cardiac development and disease. , 2010, Seminars in cell & developmental biology.

[33]  K. Keltai,et al.  Doxorubicin selectively suppresses mRNA expression and production of endothelin-1 in endothelial cells. , 2010, Vascular pharmacology.

[34]  R. Tsang,et al.  A population-based study of cardiac morbidity among Hodgkin lymphoma patients with preexisting heart disease. , 2010, Blood.

[35]  Norman Honbo,et al.  Doxorubicin Cardiomyopathy , 2009, Cardiology.

[36]  S. Lancel,et al.  NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. , 2009, Biochemical and biophysical research communications.

[37]  C. Maggi,et al.  ACE inhibition and protection from doxorubicin-induced cardiotoxicity in the rat. , 2009, Vascular pharmacology.

[38]  S. Johnston,et al.  Statins , 2009, Neurology.

[39]  D. K. Shakir,et al.  Chemotherapy Induced Cardiomyopathy: Pathogenesis, Monitoring and Management , 2009, Journal of clinical medicine research.

[40]  B. Day Catalase and glutathione peroxidase mimics. , 2009, Biochemical pharmacology.

[41]  P. Huber,et al.  Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. , 2008, Biochimica et biophysica acta.

[42]  S. Yusuf,et al.  Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation , 2007, International journal of nanomedicine.

[43]  G. D. De Keulenaer,et al.  Role of Neuregulin-1/ErbB Signaling in Cardiovascular Physiology and Disease: Implications for Therapy of Heart Failure , 2007, Circulation.

[44]  Barbara Casadei,et al.  Cardiomyocytes as effectors of nitric oxide signalling. , 2007, Cardiovascular research.

[45]  B. Turk,et al.  Protease signalling in cell death: caspases versus cysteine cathepsins , 2007, FEBS letters.

[46]  G. Takemura,et al.  Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. , 2007, Progress in cardiovascular diseases.

[47]  W. Aird Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds , 2007, Circulation research.

[48]  D. Nielsen,et al.  Anthracycline-induced chronic cardiotoxicity and heart failure , 2007, Acta oncologica.

[49]  E. Halpern,et al.  Iloprost attenuates doxorubicin-induced cardiac injury in a murine model without compromising tumour suppression. , 2006, European heart journal.

[50]  R. Shohet,et al.  Endogenous Endothelin-1 Is Required for Cardiomyocyte Survival In Vivo , 2006, Circulation.

[51]  J. Molkentin,et al.  Regulation of cardiac hypertrophy by intracellular signalling pathways , 2006, Nature Reviews Molecular Cell Biology.

[52]  Richard T. Lee,et al.  Endothelial-cardiomyocyte interactions in cardiac development and repair. , 2006, Annual review of physiology.

[53]  Min Zhang,et al.  NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[54]  M. Pfreundschuh,et al.  NAD(P)H Oxidase and Multidrug Resistance Protein Genetic Polymorphisms Are Associated With Doxorubicin-Induced Cardiotoxicity , 2005, Circulation.

[55]  R. Bolli,et al.  Prostacyclin attenuates oxidative damage of myocytes by opening mitochondrial ATP-sensitive K+ channels via the EP3 receptor. , 2005, American journal of physiology. Heart and circulatory physiology.

[56]  R. Ritchie,et al.  Activation of IP prostanoid receptors prevents cardiomyocyte hypertrophy via cAMP-dependent signaling. , 2004, American journal of physiology. Heart and circulatory physiology.

[57]  Richard T. Lee,et al.  Endothelial Cells Promote Cardiac Myocyte Survival and Spatial Reorganization: Implications for Cardiac Regeneration , 2004, Circulation.

[58]  B. McDermott,et al.  Evidence for altered ETB receptor characteristics during development and progression of ventricular cardiomyocyte hypertrophy. , 2004, American journal of physiology. Heart and circulatory physiology.

[59]  Stephen H. D. Jackson,et al.  Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. , 2003, British journal of clinical pharmacology.

[60]  R. Hammer,et al.  Hypertrophic Response to Angiotensin Ii Cardiac Function and an Unaltered Receptor Knockout Mice Have Normal Cardiomyocyte-specific Endothelin A , 2003 .

[61]  L. Mendes,et al.  Cardiac complications of mediastinal radiotherapy. The other side of the coin. , 2003, Journal of the American College of Cardiology.

[62]  P. Gwilt,et al.  The effect of age on the early disposition of doxorubicin , 2003, Cancer Chemotherapy and Pharmacology.

[63]  J. Bauer,et al.  Peroxynitrite-induced inhibition and nitration of cardiac myofibrillar creatine kinase. , 2002, Biochimie.

[64]  J. Joseph,et al.  Transferrin Receptor-dependent Iron Uptake Is Responsible for Doxorubicin-mediated Apoptosis in Endothelial Cells , 2002, The Journal of Biological Chemistry.

[65]  J. Redondo,et al.  Doxorubicin Induces Apoptosis and CD95 Gene Expression in Human Primary Endothelial Cells through a p53-dependent Mechanism* , 2002, The Journal of Biological Chemistry.

[66]  J. Joseph,et al.  Doxorubicin-induced Apoptosis Is Associated with Increased Transcription of Endothelial Nitric-oxide Synthase , 2001, The Journal of Biological Chemistry.

[67]  E. Blaak,et al.  Gender differences in fat metabolism , 2001, Current opinion in clinical nutrition and metabolic care.

[68]  D. Montaudon,et al.  Effects of the combination of camptothecin and doxorubicin or etoposide on rat glioma cells and camptothecin-resistant variants , 2001, British Journal of Cancer.

[69]  J. Joseph,et al.  Doxorubicin-induced Apoptosis in Endothelial Cells and Cardiomyocytes Is Ameliorated by Nitrone Spin Traps and Ebselen , 2000, The Journal of Biological Chemistry.

[70]  K. Kannan,et al.  Oxidative stress and apoptosis. , 2000, Pathophysiology : the official journal of the International Society for Pathophysiology.

[71]  D. Jain,et al.  Cardiotoxicity of doxorubicin and other anthracycline derivatives , 2000, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[72]  X. Liu,et al.  An APAF-1·Cytochrome c Multimeric Complex Is a Functional Apoptosome That Activates Procaspase-9* , 1999, The Journal of Biological Chemistry.

[73]  D. Gewirtz,et al.  A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. , 1999, Biochemical pharmacology.

[74]  H. Crijns,et al.  Early detection of anthracycline induced cardiotoxicity in asymptomatic patients with normal left ventricular systolic function: autonomic versus echocardiographic variables , 1999, Heart.

[75]  A. Porter,et al.  Emerging roles of caspase-3 in apoptosis , 1999, Cell Death and Differentiation.

[76]  E. Monti,et al.  Role of iron in anthracycline cardiotoxicity: new tunes for an old song? , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[77]  J. Groves,et al.  Peroxynitrite rapidly permeates phospholipid membranes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. Holden,et al.  Human DNA topoisomerase II-alpha: a new marker of cell proliferation in invasive breast cancer. , 1997, Human pathology.

[79]  K. Pritchard,et al.  Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. , 1997, Biochemistry.

[80]  Hung-Yi Wu,et al.  Molecular Mechanisms of Doxorubicin-induced Cardiomyopathy , 1997, The Journal of Biological Chemistry.

[81]  J. Rouleau,et al.  The cardiac endothelium: functional morphology, development, and physiology. , 1996, Progress in cardiovascular diseases.

[82]  G. Hatch Regulation of cardiolipin biosynthesis in the heart , 1996, Molecular and Cellular Biochemistry.

[83]  R. Hruban,et al.  Myocarditis associated with doxorubicin cardiotoxicity. , 1993, American journal of clinical pathology.

[84]  Y. Hirata,et al.  Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. , 1993, The Journal of clinical investigation.

[85]  F. Zunino,et al.  Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. , 1992, Biochimica et biophysica acta.

[86]  T. Einarson,et al.  The Effects of Impaired Liver Function on the Elimination of Antineoplastic Agents , 1992, The Annals of pharmacotherapy.

[87]  S. Colan,et al.  Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. , 1991, The New England journal of medicine.

[88]  M. Yanagisawa,et al.  Positive inotropic action of novel vasoconstrictor peptide endothelin on guinea pig atria. , 1988, The American journal of physiology.

[89]  Sadao Kimura,et al.  A novel potent vasoconstrictor peptide produced by vascular endothelial cells , 1988, Nature.

[90]  M. D’Incalci,et al.  Doxorubicin distribution in human breast cancer. , 1987, Cancer treatment reports.

[91]  S. Aust,et al.  Release of iron from ferritin by cardiotoxic anthracycline antibiotics. , 1986, Archives of biochemistry and biophysics.

[92]  R. S. Kent,et al.  Effect of hydrogen peroxide on prostaglandin production and cellular integrity in cultured porcine aortic endothelial cells. , 1985, The Journal of clinical investigation.

[93]  D. V. Von Hoff,et al.  Risk factors for doxorubicin-induced congestive heart failure. , 1979, Annals of internal medicine.

[94]  J. Pitha,et al.  A clinicopathologic analysis of adriamycin cardiotoxicity , 1973, Cancer.

[95]  S. Henikoff,et al.  Doxorubicin, DNA torsion, and chromatin dynamics. , 2014, Biochimica et biophysica acta.

[96]  D. Sawyer,et al.  Circulating neuregulin during the transition from stage A to stage B/C heart failure in a breast cancer cohort. , 2013, Journal of cardiac failure.

[97]  J. Zhang,et al.  Neuregulin-1 protects against doxorubicin-induced apoptosis in cardiomyocytes through an Akt-dependent pathway. , 2013, Physiological research.

[98]  Jeffrey L Brodsky,et al.  The use of in vitro assays to measure endoplasmic reticulum-associated degradation. , 2010, Methods in enzymology.

[99]  F. Zunino,et al.  Atomic force microscopy study of DNA conformation in the presence of drugs , 2010, European Biophysics Journal.

[100]  W. Hundley,et al.  Aortic stiffness increases upon receipt of anthracycline chemotherapy. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[101]  L. Liaudet,et al.  Nitric oxide and peroxynitrite in health and disease. , 2007, Physiological reviews.

[102]  Yen-Ling Chen,et al.  Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy. , 2005, Journal of biomedical science.

[103]  G. Schuurhuis,et al.  Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. , 1990, Pharmacology & therapeutics.