Merging diaries and GPS records: The method of data collection for spatio-temporal research

Abstract The results of a ‘proof-of-concept’ study that examined a new opportunity for using GPS technology in activity surveys are presented in this article. The aim is to demonstrate the method of collection and processing of individual time-space data via the dual records of a time-space diary and the GPS locator. The GPS technology here is not treated as a substitute for the traditional method of diaries; rather, the paper concentrates on the potential existing in a combination of these two techniques. The time-geographical approach and the corresponding methodology are used in order to assess the complexities of an individual’s everyday life, and to capture the spectrum of human activities in a data frame applicable to different analyses in behavioural, social and transportation research. This method not only improves the quality and robustness of spatio-temporal data, but also reduces under-reporting and the burdens on the respondents.

[1]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[2]  B. Lenntorp Paths in space-time environments : a time-geographic study of movement possibilities of individuals , 1976 .

[3]  A. Pred,et al.  Social Reproduction and the Time-Geography of Everyday Life , 1981 .

[4]  Torsten Hägerstrand,et al.  What about people in Regional Science? , 1970 .

[5]  Harvey J. Miller,et al.  Modelling accessibility using space-time prism concepts within geographical information systems , 1991, Int. J. Geogr. Inf. Sci..

[6]  P. Hallin,et al.  New Paths for Time-Geography? , 1991 .

[7]  A. Pratt Coordinating Employment, Transport and Housing in Cities: An Institutional Perspective , 1996 .

[8]  Mei-Po Kwan,et al.  Network-based constraints-oriented choice set formation using GIS , 1998 .

[9]  B. Lenntorp,et al.  Time-geography – at the end of its beginning , 1999 .

[10]  E. Murakami,et al.  Can using global positioning system (GPS) improve trip reporting , 1999 .

[11]  Harvey J. Miller,et al.  GIS Software for Measuring Space-Time Accessibility in Transportation Planning and Analysis , 2000, GeoInformatica.

[12]  Shih-Lung Shaw,et al.  Handling Disaggregate Spatiotemporal Travel Data in GIS , 2000, GeoInformatica.

[13]  Mei-Po Kwan,et al.  Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: a methodological exploration with a large data set , 2000 .

[14]  Nelly Kalfs,et al.  Global Positioning System as Data Collection Method for Travel Research , 2000 .

[15]  Donald G. Janelle,et al.  Geovisualization of Human Activity Patterns Using 3 D GIS : A Time-Geographic Approach , 2002 .

[16]  M. Kwan,et al.  Bringing Time Back In: A Study on the Influence of Travel Time Variations and Facility Opening Hours on Individual Accessibility , 2002 .

[17]  R De Jong,et al.  WEARABLE GPS DEVICE AS A DATA COLLECTION METHOD FOR TRAVEL RESEARCH , 2003 .

[18]  B. Lenntorp,et al.  THE DRAMA OF REAL-LIFE IN A TIME-GEOGRAPHIC DISGUISE , 2003 .

[19]  Andrew S. Harvey,et al.  Time-Space Diaries: Merging Traditions , 2003 .

[20]  J. Wolf,et al.  Impact of Underreporting on Mileage and Travel Time Estimates: Results from Global Positioning System-Enhanced Household Travel Survey , 2003 .

[21]  J. Ritsemavaneck,et al.  Lifestyles, spatial configurations and quality of life in daily travel: an explorative simulation study , 2004 .

[22]  Yasuo Asakura,et al.  TRACKING SURVEY FOR INDIVIDUAL TRAVEL BEHAVIOUR USING MOBILE COMMUNICATION INSTRUMENTS , 2004 .

[23]  Takamasa Iryo,et al.  Tracking Individual Travel Behavior Using Mobile Phone , 2004 .

[24]  M. Kwan Gis methods in time‐geographic research: geocomputation and geovisualization of human activity patterns , 2004 .

[25]  Harvey J. Miller,et al.  Necessary Space—Time Conditions for Human Interaction , 2005 .

[26]  P Mateos Mapping the space of flows: mobile phone location as a method to track the mobile society , 2005 .

[27]  R. Ahas,et al.  Location based services—new challenges for planning and public administration? , 2005 .

[28]  Tommy Gärling,et al.  COMPUTATIONAL PROCESS MODELING OF HOUSEHOLD TRAVEL DECISIONS USING A GEOGRAPHICAL INFORMATION SYSTEM , 2005 .

[29]  Susan Kenyon The "accessibility diary": Discussing a new methodological approach to understand the impact of Internet use upon personal travel and activity participation , 2006 .

[30]  Kazuo Nishii,et al.  Activity diary surveys using GPS mobile phones and PDA , 2006 .

[31]  Pavlos S. Kanaroglou,et al.  A GIS toolkit for exploring geographies of household activity/travel behavior , 2006 .

[32]  K. Hamrick American Time Use Survey Early Results Conference , 2006 .

[33]  N. Shoval,et al.  Application of Tracking Technologies to the Study of Pedestrian Spatial Behavior* , 2006 .

[34]  Carlo Ratti,et al.  Mobile Landscapes: Graz in Real Time , 2007, Location Based Services and TeleCartography.

[35]  Rein Ahas,et al.  Mobile Positioning in Space–Time Behaviour Studies: Social Positioning Method Experiments in Estonia , 2007 .

[36]  Georg Gartner,et al.  Applications of location–based services: a selected review , 2007, J. Locat. Based Serv..

[37]  R. Ahas,et al.  Seasonal tourism spaces in Estonia: Case study with mobile positioning data , 2007 .

[38]  L. Sýkora,et al.  A city in motion: time‐space activity and mobility patterns of suburban inhabitants and the structuration of the spatial organization of the prague metropolitan area , 2007 .

[39]  Stephan Winter,et al.  Time geography for ad-hoc shared-ride trip planning in mobile geosensor networks , 2007 .

[40]  Rein Ahas,et al.  Evaluating passive mobile positioning data for tourism surveys: An Estonian case study , 2008 .

[41]  Shih-Lung Shaw,et al.  Exploring potential human activities in physical and virtual spaces: a spatio‐temporal GIS approach , 2008, Int. J. Geogr. Inf. Sci..

[42]  Hongbo Yu,et al.  A Space‐Time GIS Approach to Exploring Large Individual‐based Spatiotemporal Datasets , 2008, Trans. GIS.

[43]  Scott A. Bridwell,et al.  A Field-Based Theory for Time Geography , 2009 .

[44]  J. H. Nel,et al.  THE USE OF GLOBAL POSITIONING DEVICES IN TRAVEL SURVEYS - A developing country application , 2009 .

[45]  Jeroen van Schaick,et al.  Sensing Human Activity: GPS Tracking , 2009, Sensors.

[46]  Joshua Auld,et al.  An automated GPS-based prompted recall survey with learning algorithms , 2009 .

[47]  Ondřej Mulíček,et al.  Časoprostorové rytmy města - industriální a postindustriálníBrno , 2010 .

[48]  R. Ahas,et al.  Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data , 2010 .

[49]  P. Klapka,et al.  PLACES AND STUDENTS IN URBAN ENVIRONMENT : A TIME-GEOGRAPHICAL PERSPECTIVE , 2010 .

[50]  Robert Osman Specifika časoprostorového chování imobilních osob , 2010 .

[51]  M. Kwan Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework , 2010 .

[52]  Jakub Novák Lokalizační data mobilních telefonů: Možnosti využití v geografickém výzkumu , 2010 .

[53]  J. Novák,et al.  Každodenní život, denní mobilita a adaptační strategie obyvatel v periferních lokalitách* , 2011 .

[54]  Chandra R. Bhat,et al.  An analysis of the factors influencing differences in survey-reported and GPS-recorded trips , 2012 .

[55]  Peter R. Stopher,et al.  An in-depth comparison of GPS and diary records , 2011 .

[56]  Jana Temelová,et al.  Daily street life in the inner city of Prague under transformation: the visual experience of socio-spatial differentiation and temporal rhythms , 2011 .

[57]  Cheng-Wu Chen,et al.  Using mobile geographic information system (GIS) techniques to develop a location-based tour guiding system based on user evaluations , 2012 .

[58]  Martin Raubal,et al.  Correlating mobile phone usage and travel behavior - A case study of Harbin, China , 2012, Comput. Environ. Urban Syst..

[59]  Jakub Novák,et al.  Každodenní život a prostorová mobilita mladých Pražanů: pilotní studie využití lokalizačních dat mobilních telefonů , 2012 .

[60]  Cecilia Mascolo,et al.  Smartphones for Large-Scale Behavior Change Interventions , 2013, IEEE Pervasive Computing.

[61]  Filip Biljecki,et al.  Transportation mode-based segmentation and classification of movement trajectories , 2013, Int. J. Geogr. Inf. Sci..

[62]  Peter Vovsha,et al.  Applying GPS Data to Understand Travel Behavior, Volume I: Background, Methods, and Tests , 2014 .