Free and bound entanglement dynamics in qutrit systems under Markov and non-Markov classical noise

We investigate in detail the dynamics of decoherence, free and bound entanglements, and the conversion from one to another (quantum state transitions), in a two non-interacting qutrits system initially entangled and subject to independents or a common classical noise. Both Markovian and non-Markovian environments are considered. Furthermore, isotropic and bound entangled states for qutrits systems are considered as initial states. We show the efficiency of the formers over the latters against decoherence, and in preserving quantum entanglement. The loss of coherence increases monotonically with time up to a saturation value depending upon the initial state parameter and is stronger in a collective Markov environment. For the non-Markov regime the presence or absence of entanglement revival and entanglement sudden death phenomena is deduced depending on both the peculiar characteristics of the noise, the physical setup and the initial state of the system. We demonstrate distillability sudden death for conveniently selected parameters in bound entangled states; meanwhile, it is completely absent for isotropic states, where entanglement sudden death is avoided for dynamic noise independently of the noise regime and the physical setup. Our results indicate that distillability sudden death under the Markov/non-Markov noise considered can be avoided depending upon the physical setup.

[1]  Mediated entanglement and correlations in a star network of interacting spins , 2002, quant-ph/0208114.

[2]  Claudia Benedetti,et al.  EFFECTS OF CLASSICAL ENVIRONMENTAL NOISE ON ENTANGLEMENT AND QUANTUM DISCORD DYNAMICS , 2012, 1209.4201.

[3]  Ting Yu,et al.  Sudden death of entanglement: Classical noise effects , 2006 .

[4]  Satoshi Ishizaka Bound entanglement provides convertibility of pure entangled states. , 2004, Physical review letters.

[5]  Ugo Marzolino,et al.  Entanglement in dissipative dynamics of identical particles , 2013, 1311.7592.

[6]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[7]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[8]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[9]  L. C. Fai,et al.  Dynamics of entanglement and quantum states transitions in spin-qutrit systems under classical dephasing and the relevance of the initial state , 2018 .

[10]  Lieven Clarisse Entanglement distillation : a discourse on bound entanglement in quantum information theory , 2006 .

[11]  Hongwei Yu,et al.  Entanglement dynamics for uniformly accelerated two-level atoms , 2015, 1501.03321.

[12]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[13]  Yong-Sheng Zhang,et al.  Experimental demonstration of a simple method to engineer a single qutrit state with biphotons , 2005 .

[14]  M. Horodecki,et al.  BOUND ENTANGLEMENT CAN BE ACTIVATED , 1998, quant-ph/9806058.

[15]  G. Falci,et al.  Initial decoherence in solid state qubits. , 2005, Physical review letters.

[16]  D. Christodoulides,et al.  Quantum correlations in two-particle Anderson localization. , 2010, Physical review letters.

[17]  Mojtaba Jafarpour,et al.  Entanglement dynamics of a two-qutrit system under DM interaction and the relevance of the initial state , 2013, Quantum Inf. Process..

[18]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[19]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[20]  E. Kuznetsova,et al.  Quantum discord versus second-order MQ NMR coherence intensity in dimers , 2011, 1109.6420.

[21]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[22]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[23]  Time from quantum entanglement: an experimental illustration , 2013, 1310.4691.

[24]  Xiao-Jing Li,et al.  THERMAL DISCORD AND NEGATIVITY IN A TWO-SPIN-QUTRIT SYSTEM UNDER DIFFERENT MAGNETIC FIELDS , 2013 .

[25]  M. Jafarpour An Entanglement Study of Superposition of Qutrit Spin-Coherent States , 2011 .

[26]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[27]  L. Jakóbczyk,et al.  Quantum interference and evolution of entanglement in a system of three-level atoms , 2006, quant-ph/0606182.

[28]  M. G. A. Paris,et al.  Dynamics of quantum correlations in colored-noise environments , 2012, 1212.1484.

[29]  Arthur Tsamouo Tsokeng,et al.  Disentanglement and quantum states transitions dynamics in spin-qutrit systems: dephasing random telegraph noise and the relevance of the initial state , 2018, Quantum Inf. Process..

[30]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[31]  Shi-Liang Zhu,et al.  Erratum: Sudden death of distillability in qutrit-qutrit systems [Phys. Rev. A 80, 012331 (2009)] , 2010 .

[32]  Arthur Tsamouo Tsokeng,et al.  Quantum correlations and decoherence dynamics for a qutrit–qutrit system under random telegraph noise , 2017, Quantum Inf. Process..

[33]  A. Acín,et al.  Distillable entanglement and area laws in spin and harmonic-oscillator systems , 2007, 0705.3762.

[34]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[35]  L. C. Fai,et al.  Quantum correlations and coherence dynamics in qutrit-qutrit systems under mixed classical environmental noises , 2017 .

[36]  Gautam Vemuri,et al.  Anderson localization with second quantized fields in a coupled array of waveguides , 2010 .

[37]  M. Bourennane,et al.  QUANTUM KEY DISTRIBUTION USING MULTILEVEL ENCODING , 2001 .

[38]  G. Adesso,et al.  Quantum discord for general two-qubit states: Analytical progress , 2011, 1103.3189.

[39]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[40]  Z. Ficek,et al.  Delayed sudden birth of entanglement , 2008, 0802.4287.

[41]  J. Ignacio Cirac,et al.  Multipartite Bound Information exists and can be activated , 2004, Physical review letters.

[42]  Complete disentanglement by partial pure dephasing , 2005, quant-ph/0507027.

[43]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[44]  Zhang Yong-sheng,et al.  Class of Unlockable Bound Entangled States and Their Applications , 2008 .

[45]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[46]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[47]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[48]  Ashish V. Thapliyal,et al.  Superactivation of bound entanglement. , 2000, Physical review letters.

[49]  Shi-Liang Zhu,et al.  Sudden death of distillability in qutrit-qutrit systems , 2009 .

[50]  M. Jafarpour,et al.  Qutrit teleportation under intrinsic decoherence , 2016 .

[51]  Mazhar N. Ali Distillability sudden death in qutrit-qutrit systems under global and multilocal dephasing , 2009, 0911.0767.

[52]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[53]  Vittorio Giovannetti,et al.  Creating quantum correlations through local nonunitary memoryless channels , 2011, 1105.5551.

[54]  Yao Lu,et al.  Entanglement classification of 2 × 2 × 2 × d quantum systems via the ranks of the multiple coefficient matrices , 2013, 1306.3539.

[55]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[56]  Mazhar Ali,et al.  Distillability sudden death in qutrit–qutrit systems under amplitude damping , 2009, 0912.2868.

[57]  Géza Tóth,et al.  Optimal spin squeezing inequalities detect bound entanglement in spin models. , 2007, Physical review letters.

[58]  Zeilinger,et al.  Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.

[59]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[60]  Ka-Di Zhu,et al.  Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment , 2007 .

[61]  Asher Peres,et al.  Quantum Theory: Concepts and Methods , 1994 .

[62]  L. Jakóbczyk,et al.  Delayed birth of distillable entanglement in the evolution of bound entangled states , 2010, 1005.0687.

[63]  G. Jaeger,et al.  Disentanglement and decoherence in a pair of qutrits under dephasing noise , 2007, 0709.2703.

[64]  L. Jakóbczyk,et al.  Dynamical creation of entanglement versus disentanglement in a system of three-level atoms with vacuum-induced coherences , 2008, 0806.2537.

[65]  J. C. Retamal,et al.  Sudden birth versus sudden death of entanglement in multipartite systems. , 2008, Physical review letters.

[66]  Quantum Discord for a Qutrit-Qutrit System under Depolarizing and Dephasing Noise , 2013 .

[67]  Claudia Benedetti,et al.  EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS , 2012 .

[68]  Rosario Fazio,et al.  Decoherence and 1/f noise in Josephson qubits. , 2002, Physical review letters.

[69]  Claudia Benedetti,et al.  Quantum correlations in continuous-time quantum walks of two indistinguishable particles , 2012 .

[70]  M. Horodecki,et al.  Irreversibility for all bound entangled states. , 2005, Physical Review Letters.

[71]  Paolo Bordone,et al.  Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise , 2013, 1302.1430.

[72]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[73]  M. Orszag,et al.  Decoherence and disentanglement for two qubits in a common squeezed reservoir , 2008, 0801.1458.

[74]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[75]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[76]  V. Vedral,et al.  Mixedness and teleportation , 2000 .

[77]  J. Smolin Four-party unlockable bound entangled state , 2000, quant-ph/0001001.

[78]  M. Murao,et al.  Remote information concentration using a bound entangled state. , 2000, Physical review letters.

[79]  N. Doustimotlagh,et al.  Quantum Correlations in Qutrit-Qutrit Systems under Local Quantum Noise Channels , 2014, 1407.6804.

[80]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[81]  B. Altshuler,et al.  Decoherence in qubits due to low-frequency noise , 2009, 0904.4597.

[82]  Salman Khan,et al.  The Dynamics of Quantum Correlations in Mixed Classical Environments , 2016 .

[83]  C. Hu,et al.  Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity , 2010, 1005.5545.

[84]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[85]  Two-qubit entanglement dynamics in a symmetry-broken environment (8 pages) , 2004, quant-ph/0402073.

[86]  B. Garraway,et al.  Sudden death and sudden birth of entanglement in common structured reservoirs , 2008, 0812.3546.

[87]  M. Żukowski,et al.  Security of Quantum Key Distribution with entangled Qutrits. , 2002, quant-ph/0207057.

[88]  L. A. Krivitskii,et al.  Biphotons as three-level systems: Transformation and measurement , 2003 .