Probabilistic Modeling of Aerothermal and Thermal Protection Material Response Uncertainties

A Monte-Carlo-based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system (TPS) material response modeling for aerocapture or direct entry missions. The objective of the methodology is to identify and quantify the most important sources of uncertainty in aeroheating and the resulting thermal protection material selection, design, and sizing based on inaccuracies in current knowledge of the parametric input modeling parameters. The resulting parametric modeling uncertainty would be combined with other uncertainty sources to determine the final aeroheating and TPS response modeling uncertainty for a given application, which can then be used to define appropriate margins and factors of safety that should be applied to the TPS. These techniques facilitate a risk-based probabilistic design approach, whereby the thermal protection system can be designed to a desired risk tolerance, and any remaining risk can be effectively compared to that of other subsystems via a system-level risk mitigation analysis. Modeling sensitivities, which are a byproduct of the uncertainty analysis, can be used to rank input uncertainty drivers. Key input uncertainties can then be prioritized and targeted for further analysis or testing. The strengths and limitations of this technique are discussed. Sample results are presented for two cases: Titan aerocapture and Mars Pathfinder. These cases demonstrate the utility of the methodology to quantify the uncertainty levels, rank sources of input uncertainty, and assist in the identification of structural uncertainties in the models employed.

[1]  G. Candler,et al.  Data-Parallel Line Relaxation Method for the Navier -Stokes Equations , 1998 .

[2]  Deepak Bose,et al.  Uncertainty and Sensitivity Analysis of Thermochemical Modeling for Titan Atmospheric Entry , 2004 .

[3]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[4]  William Willcockson Stardust Sample Return Capsule Design Experience , 1999 .

[5]  David Stewart,et al.  High Enthalpy Test Methodologies for Thermal Protection Systems Development at NASA Ames Research Center , 2005 .

[6]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[7]  William M. Congdon,et al.  Mars Pathfinder entry temperature data, aerothermal heating, and heatshield material response , 1998 .

[8]  Chul Park,et al.  Laboratory simulation of aerothermodynamic phenomena - A review , 1992 .

[9]  David W. Bogdanoff,et al.  Modeling and Experimental Validation of CN Radiation Behind a Strong Shock Wave , 2005 .

[10]  Joseph H. Morrison,et al.  Uncertainty in Computational Aerodynamics , 2003 .

[11]  R. A. Mitcheltree,et al.  Wake Flow About the Mars Pathfinder Entry Vehicle , 1995 .

[12]  Mark Loomis,et al.  Aerothermal analysis of the Project Fire II afterbody flow , 2001 .

[13]  C. T. Shaw,et al.  Using Computational Fluid Dynamics , 1992 .

[14]  F. S. Milos,et al.  Analysis of Galileo Probe Heat Shield Ablation and Temperature Data , 1997 .

[15]  Prasun N. Desai,et al.  Entry Dispersion Analysis for the Genesis Sample Return Capsule , 1999 .

[16]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .

[17]  Deepak Bose,et al.  Modeling and experimental assessment of CN radiation behind a strong shock wave , 2006 .

[18]  M. E. Tauber,et al.  Mars Pathfinder Trajectory Based Heating and Ablation Calculations , 1995 .

[19]  Cheatwood F. McNeil,et al.  User''s Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) , 1996 .

[20]  Deepak Bose,et al.  Impact of Flowfield-Radiation Coupling on Aeroheating for Titan Aerocapture , 2005 .

[21]  Sam Kash Kachigan Multivariate statistical analysis: A conceptual introduction , 1982 .

[22]  Ethiraj Venkatapathy,et al.  Computational Aerothermodynamic Design Issues for Hypersonic Vehicles , 1997 .

[23]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[24]  F. S. Milos,et al.  Analysis of Galileo Probe Heatshield Ablation and Temperature Data , 1999 .

[25]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[26]  Les Johnson,et al.  NASA's In-Space Propulsion Technology Program: Overview and Update , 2004 .

[27]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[28]  William Willcockson,et al.  Mars Pathfinder Heatshield Design and Flight Experience , 1999 .

[29]  L. F. Hearne,et al.  A study of the effects of environmental and ablator performance uncertainties on heat shielding requirements for blunt and slender hyperbolic-entry vehicles. , 1968 .

[30]  Robert W. Bailey,et al.  Cost-Benefit Analysis of the Aerocapture Mission Set , 2005 .

[31]  Unmeel B. Mehta,et al.  Guide to credible computer simulations of fluid flows , 1996 .

[32]  Michelle M. Munk,et al.  Aerocapture Technology Development Within the NASA In-Space Propulsion Program , 2003 .

[33]  Yih-Kanq Chen,et al.  Monte Carlo Analysis for Spacecraft Thermal Protection System Design , 2006 .

[34]  J. H. Thomas,et al.  X-33 Computational Aeroheating Predictions and Comparisons With Experimental Data , 1999 .

[35]  David L. Darmofal,et al.  Using computational fluid dynamics in probabilistic engineering design , 2001 .

[36]  Dinesh K. Prabhu,et al.  An Analysis of the Radiative Heating Environment for Aerocapture at Titan , 2003 .

[37]  Deepak Bose,et al.  Uncertainty Analysis of Laminar Aeroheating Predictions for Mars Entries , 2005 .

[38]  ERRORS AND UNCERTAINTIES IN PROBABILISTIC ENGINEERING ANALYSIS , 2001 .

[39]  Mary Kae Lockwood,et al.  Titan Aerocapture Systems Analysis , 2003 .

[40]  Daniel J. Rasky,et al.  Review of numerical procedures for computational surface thermochemistry , 1994 .

[41]  Christopher J. Roy,et al.  Veri cation and Validation for Laminar Hypersonic Flow elds , Part 2 : Validation , 2003 .

[42]  Dinesh K. Prabhu,et al.  Analysis of Apollo Command Module Afterbody Heating Part I: AS-202 , 2006 .

[43]  L. F. Hearne,et al.  Effects of environmental and ablator performance uncertainties on heat-shielding requirements for hyperbolic entry vehicles. , 1968 .

[44]  Frank S. Milos,et al.  Ablation and Thermal Response Program for Spacecraft Heatshield Analysis , 1999 .

[45]  Tahir Gokcen,et al.  N2-CH4-Ar Chemical Kinetic Model for Simulations of Atmospheric Entry to Titan , 2004 .

[46]  Robert A. Mitcheltree,et al.  Probabilistic Design of a Mars Sample Return Earth Entry Vehicle Thermal Protection System , 2002 .

[47]  Chul-Hyun Park,et al.  Two-temperature interpretation of dissociation rate data for N2 and O2 , 1988 .

[48]  Timothy G. Trucano,et al.  Verification and validation. , 2005 .