An ontology-driven system for detecting global health events

Text mining for global health surveillance is an emerging technology that is gaining increased attention from public health organisations and governments. The lack of multilingual resources such as WordNets specifically targeted at this task have so far been a major bottleneck. This paper reports on a major upgrade to the BioCaster Web monitoring system and its freely available multilingual ontology; improving its original design and extending its coverage of diseases from 70 to 336 in 12 languages.

[1]  Lawrence O Gostin,et al.  International infectious disease law: revision of the World Health Organization's International Health Regulations. , 2004, JAMA.

[2]  John S. Brownstein,et al.  The Landscape of International Biosurveillance , 2010 .

[3]  D. Lindberg,et al.  Unified Medical Language System , 2020, Definitions.

[4]  Michael M. Wagner,et al.  Handbook of biosurveillance , 2006 .

[5]  Vitali Sintchenko,et al.  Infectious disease informatics , 2010 .

[6]  Piek T. J. M. Vossen,et al.  Introduction to EuroWordNet , 1998, Comput. Humanit..

[7]  Avian influenza: assessing the pandemic threat Avian influenza: assessing the pandemic threat , 2005 .

[8]  Roman YANGARBER,et al.  Content Collection and Analysis in the Domain of Epidemiology , 2008 .

[9]  Nigel Collier,et al.  A multilingual ontology for infectious disease surveillance: rationale, design and challenges , 2007, Lang. Resour. Evaluation.

[10]  Nigel Collier,et al.  What's unusual in online disease outbreak news? , 2010, J. Biomed. Semant..

[11]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[12]  Adam Blake,et al.  Quantifying the Impact of Foot and Mouth Disease on Tourism and the UK Economy , 2003 .

[13]  Kenneth D. Mandl,et al.  HealthMap: Global Infectious Disease Monitoring through Automated Classification and Visualization of Internet Media Reports , 2008, Journal of the American Medical Informatics Association.

[14]  L. Madoff,et al.  The internet and the global monitoring of emerging diseases: lessons from the first 10 years of ProMED-mail. , 2005, Archives of medical research.

[15]  Daniel Zeng,et al.  Infectious Disease Informatics: Syndromic Surveillance for Public Health and BioDefense , 2009 .

[16]  Jeremy Ginsberg,et al.  Detecting influenza epidemics using search engine query data , 2009, Nature.

[17]  Son Doan,et al.  BioCaster: detecting public health rumors with a Web-based text mining system , 2008, Bioinform..

[18]  Nicola Guarino,et al.  A Formal Ontology of Properties , 2000, EKAW.

[19]  Kent A. Spackman,et al.  SNOMED clinical terms: overview of the development process and project status , 2001, AMIA.

[20]  N. Cox,et al.  Influenza pandemic planning. , 2003, Vaccine.

[21]  Michael Blench Global Public Health Intelligence Network (GPHIN) , 2008, AMTA.

[22]  Dan Brickley,et al.  SKOS Core: Simple knowledge organisation for the Web , 2005, Dublin Core Conference.

[23]  C E Lipscomb,et al.  Medical Subject Headings (MeSH). , 2000, Bulletin of the Medical Library Association.

[24]  Michael M. Wagner,et al.  CHAPTER 26 – The Internet as Sentinel , 2006 .

[25]  Brämer Gr International statistical classification of diseases and related health problems. Tenth revision. , 1988, World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales.