Environment-assisted and feedback-assisted stabilization of quantum stochastic evolutions

We consider a class of pure-state preparation problems for stochastic quantum dynamics, by means of Hamiltonian control, continuous measurement and quantum feedback, in the presence of a Markovian environment. We prove that, whenever suitable dissipative effects are induced either by the unmonitored environment or by continuous-time measurements, open-loop time-invariant control is in principle sufficient to achieve stabilization of the target state (in probability). When this is not sufficient, we show that state stabilization can be attained for a wide class of models by the addition of a switching, filtering-based feedback control Hamiltonian.

[1]  Andrzej Kossakowski,et al.  Properties of Quantum Markovian Master Equations , 1978 .

[2]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[3]  R. Handel The stability of quantum Markov filters , 2007, 0709.2216.

[4]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[5]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[6]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[7]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[8]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[9]  Alberto Barchielli,et al.  Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case , 2009 .

[10]  Xiaoting Wang,et al.  Stabilizing Quantum States by Constructive Design of Open Quantum Dynamics , 2010, IEEE Transactions on Automatic Control.

[11]  Hiroshi Kunita The Support of Diffusion Process and Controllability Problem (PARTIAL DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS) , 1976 .

[12]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[13]  Jun-ichi Imura,et al.  Global feedback stabilization of quantum noiseless subsystems , 2009, 2009 American Control Conference.

[14]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[15]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[16]  Lorenza Viola,et al.  Quantum Markovian Subsystems: Invariance, Attractivity, and Control , 2007, IEEE Transactions on Automatic Control.

[17]  Hideo Mabuchi,et al.  Feedback cooling of atomic motion in cavity QED (21 pages) , 2005, quant-ph/0509039.

[18]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[19]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[20]  H. M. Wiseman,et al.  Feedback-stabilization of an arbitrary pure state of a two-level atom , 2001 .

[21]  Naoki Yamamoto,et al.  Control of Quantum Systems Despite Feedback Delay , 2007, IEEE Transactions on Automatic Control.

[22]  Holger F. Hofmann,et al.  Quantum control of atomic systems by homodyne detection and feedback , 1998 .

[23]  Riccardo Lucchese,et al.  Hamiltonian Control of Quantum Dynamical Semigroups: Stabilization and Convergence Speed , 2012, IEEE Transactions on Automatic Control.

[24]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[25]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[26]  Ramon van Handel,et al.  Quantum projection filter for a highly nonlinear model in cavity QED , 2005 .

[27]  Howard M. Wiseman,et al.  Replacing quantum feedback with open-loop control and quantum filtering , 2009, 0908.0198.

[28]  Lorenza Viola,et al.  Analysis and synthesis of attractive quantum Markovian dynamics , 2008, Autom..

[29]  K. Tsumura Global Stabilization of N-dimensional Quantum Spin Systems via Continuous Feedback , 2007, 2007 American Control Conference.

[30]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[31]  H. Kushner Stochastic Stability and Control , 2012 .

[32]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[33]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[34]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .

[35]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .