Modeling of missing dynamical systems: deriving parametric models using a nonparametric framework

In this paper, we consider modeling missing dynamics with a nonparametric non-Markovian model, constructed using the theory of kernel embedding of conditional distributions on appropriate reproducing kernel Hilbert spaces (RKHS), equipped with orthonormal basis functions. Depending on the choice of the basis functions, the resulting closure model from this nonparametric modeling formulation is in the form of parametric model. This suggests that the success of various parametric modeling approaches that were proposed in various domains of applications can be understood through the RKHS representations. When the missing dynamical terms evolve faster than the relevant observable of interest, the proposed approach is consistent with the effective dynamics derived from the classical averaging theory. In the linear Gaussian case without the time-scale gap, we will show that the proposed non-Markovian model with a very long memory yields an accurate estimation of the nontrivial autocovariance function for the relevant variable of the full dynamics. The supporting numerical results on instructive nonlinear dynamics show that the proposed approach is able to replicate high-dimensional missing dynamical terms on problems with and without the separation of temporal scales.

[1]  John Harlim,et al.  Correcting Biased Observation Model Error in Data Assimilation , 2016, 1611.05405.

[2]  Andrew J. Majda,et al.  An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models , 2014, J. Comput. Phys..

[3]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[4]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[5]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[6]  John Harlim,et al.  Data-Driven Computational Methods , 2018, 1803.07711.

[7]  Karthik Duraisamy,et al.  A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[9]  Eric Vanden-Eijnden,et al.  Subgrid-Scale Parameterization with Conditional Markov Chains , 2008 .

[10]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale systems with applications to Lorenz 96 model , 2004 .

[11]  A. Majda,et al.  Statistical Mechanics for Truncations of the Burgers-Hopf Equation: A Model for Intrinsic Stochastic Behavior with Scaling , 2002 .

[12]  Robert H. Kraichnan,et al.  The structure of isotropic turbulence at very high Reynolds numbers , 1959, Journal of Fluid Mechanics.

[13]  Alexandre J. Chorin,et al.  Data-based stochastic model reduction for the Kuramoto--Sivashinsky equation , 2015, 1509.09279.

[14]  Andrew J. Majda,et al.  Physics constrained nonlinear regression models for time series , 2012 .

[15]  Thomas G. Kurtz,et al.  Semigroups of Conditioned Shifts and Approximation of Markov Processes , 1975 .

[16]  Michael Ghil,et al.  Data-driven non-Markovian closure models , 2014, 1411.4700.

[17]  A J Majda,et al.  Remarkable statistical behavior for truncated Burgers-Hopf dynamics. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Wojciech W. Grabowski,et al.  An Improved Framework for Superparameterization. , 2004 .

[19]  Alan R. Kerstein,et al.  One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows , 1999, Journal of Fluid Mechanics.

[20]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[21]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[22]  Alexandre J. Chorin,et al.  Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems , 2016, 1605.02273.

[23]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[24]  Xuemin Tu,et al.  Accounting for Model Error from Unresolved Scales in Ensemble Kalman Filters by Stochastic Parameterization , 2017 .

[25]  John Harlim,et al.  Linear theory for filtering nonlinear multiscale systems with model error , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Georg A. Gottwald,et al.  The role of additive and multiplicative noise in filtering complex dynamical systems , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Andrew J. Majda,et al.  A stochastic multicloud model for tropical convection , 2010 .

[28]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[29]  He Zhang,et al.  Computing linear response statistics using orthogonal polynomial based estimators: An RKHS formulation , 2019 .

[30]  Amir Averbuch,et al.  Matrix compression using the Nyström method , 2013, Intell. Data Anal..

[31]  Terence J. O'Kane,et al.  Entropy, Closures and Subgrid Modeling , 2008, Entropy.

[32]  John Harlim,et al.  Parametric reduced models for the nonlinear Schrödinger equation. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Andrew J. Majda,et al.  Stochastic models for selected slow variables in large deterministic systems , 2006 .

[34]  D. Wilks Effects of stochastic parametrizations in the Lorenz '96 system , 2005 .

[35]  Vanden Eijnden E,et al.  Models for stochastic climate prediction. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Le Song,et al.  A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .

[37]  John Harlim,et al.  Semiparametric modeling: Correcting low-dimensional model error in parametric models , 2015, J. Comput. Phys..

[38]  G. Papanicolaou Some probabilistic problems and methods in singular perturbations , 1976 .

[39]  Nathan A. Baker,et al.  Data-driven parameterization of the generalized Langevin equation , 2016, Proceedings of the National Academy of Sciences.

[40]  Andrew J. Majda,et al.  Information theory and stochastics for multiscale nonlinear systems , 2005 .

[41]  Alan R. Kerstein,et al.  A linear-eddy model of turbulent scalar transport and mixing , 1988 .

[42]  Andrew J. Majda,et al.  The MJO and Convectively Coupled Waves in a Coarse-Resolution GCM with a Simple Multicloud Parameterization , 2010 .

[43]  Shixiao W. Jiang,et al.  Machine Learning for Prediction with Missing Dynamics , 2019, ArXiv.

[44]  Shixiao W. Jiang,et al.  Parameter Estimation with Data-Driven Nonparametric Likelihood Functions , 2018, Entropy.

[45]  Andrew J. Majda,et al.  New perspectives on superparameterization for geophysical turbulence , 2014, J. Comput. Phys..

[46]  Alexandre J. Chorin,et al.  Problem reduction, renormalization, and memory , 2005 .

[47]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[48]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[49]  Frank Kwasniok,et al.  Data-based stochastic subgrid-scale parametrization: an approach using cluster-weighted modelling , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[51]  Michael Ghil,et al.  Multilevel Regression Modeling of Nonlinear Processes: Derivation and Applications to Climatic Variability , 2005 .

[52]  Alexander J. Smola,et al.  Hilbert space embeddings of conditional distributions with applications to dynamical systems , 2009, ICML '09.