Impact of irreversible data compression on spectral distortion of hyper-spectral data

Goal of the present work is to investigate and compare different compression methodologies from the viewpoint of spectral distortion introduced in hyper-spectral pixel vectors. The main result of this analysis is that, for a given compression ratio, near-lossless methods, either MAD-or PMAD-constrained, are more suitable for preserving the spectral discrimination capability among pixel vectors, which is the principal outcome of spectral information. Therefore, whenever a lossless compression is not practicable, the use of near-lossless compression is recommended in such application where spectral quality is a crucial point.

[1]  Jindi Wang,et al.  Spectral and spatial decorrelation of Landsat-TM data for lossless compression , 1995, IEEE Trans. Geosci. Remote. Sens..

[2]  Chein-I Chang,et al.  An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis , 2000, IEEE Trans. Inf. Theory.

[3]  Luciano Alparone,et al.  Information-theoretic assessment of sampled hyperspectral imagers , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  R. E. Roger,et al.  Lossless compression of AVIRIS images , 1996, IEEE Trans. Image Process..

[5]  Tenkasi V. Ramabadran,et al.  Near-lossless compression of medical images through entropy-coded DPCM , 1994, IEEE Trans. Medical Imaging.

[6]  Luciano Alparone,et al.  Near-lossless image compression by relaxation-labelled prediction , 2002, Signal Process..

[7]  Luciano Alparone,et al.  A pyramid-based error-bounded encoder: An evaluation on X-ray chest images , 1997, Signal Process..

[8]  Luciano Alparone,et al.  Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Luciano Alparone,et al.  Near-lossless compression of 3-D optical data , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  John F. Arnold,et al.  Lossy compression of hyperspectral data using vector quantization , 1997 .

[11]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[12]  K. R. Rao,et al.  Techniques and Standards for Image, Video, and Audio Coding , 1996 .

[13]  L. Alparone,et al.  Context modeling for near-lossless image coding , 2002, IEEE Signal Processing Letters.

[14]  Nasir D. Memon,et al.  Context-based lossless interband compression-extending CALIC , 2000, IEEE Trans. Image Process..

[15]  Luciano Alparone,et al.  Lossless image compression by quantization feedback in a content-driven enhanced Laplacian pyramid , 1997, IEEE Trans. Image Process..

[16]  V. D. Vaughn,et al.  System considerations for multispectral image compression designs , 1995, IEEE Signal Process. Mag..

[17]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[18]  John F. Arnold,et al.  Reversible image compression bounded by noise , 1994, IEEE Trans. Geosci. Remote. Sens..