COSMOS: Three-dimensional Weak Lensing and the Growth of Structure

We present a three-dimensional cosmic shear analysis of the Hubble Space Telescope COSMOS survey, the largest ever optical imaging program performed in space. We have measured the shapes of galaxies for the telltale distortions caused by weak gravitational lensing and traced the growth of that signal as a function of redshift. Using both 2D and 3D analyses, we measure cosmological parameters Ωm, the density of matter in the universe, and σ8, the normalization of the matter power spectrum. The introduction of redshift information tightens the constraints by a factor of 3 and also reduces the relative sampling (or "cosmic") variance compared to recent surveys that may be larger but are only two-dimensional. From the 3D analysis, we find that σ8(Ωm/0.3)0.44 = 0.866 at 68% confidence limits, including both statistical and potential systematic sources of error in the total budget. Indeed, the absolute calibration of shear measurement methods is now the dominant source of uncertainty. Assuming instead a baseline cosmology to fix the geometry of the universe, we have measured the growth of structure on both linear and nonlinear physical scales. Our results thus demonstrate a proof of concept for tomographic analysis techniques that have been proposed for future weak-lensing surveys by a dedicated wide-field telescope in space.

[1]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[2]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[3]  Y. Mellier,et al.  The Stability of the Point-Spread Function of the Advanced Camera for Surveys on the Hubble Space Telescope and Implications for Weak Gravitational Lensing , 2007, astro-ph/0702140.

[4]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[5]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[6]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[7]  Y. Mellier,et al.  Cosmic variance of weak lensing surveys in the non‐Gaussian regime , 2006, astro-ph/0606648.

[8]  P. Schneider,et al.  The ring statistics - how to separate E- and B-modes of cosmic shear correlation functions on a finite interval , 2006, astro-ph/0605084.

[9]  D. Thompson,et al.  Photometric Redshifts of Galaxies in COSMOS , 2006, astro-ph/0612344.

[10]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[11]  W. P. Lin,et al.  The giant arc statistics in the three-year Wilkinson Microwave Anisotropy Probe cosmological model , 2006 .

[12]  R. Bower,et al.  Revisiting the baryon fractions of galaxy clusters: a comparison with WMAP 3-yr results , 2006, astro-ph/0609314.

[13]  G. Bernstein,et al.  Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method , 2006, astro-ph/0607062.

[14]  T. Kitching,et al.  Measuring dark energy properties with 3D cosmic shear , 2006, astro-ph/0606568.

[15]  A. N. Taylor,et al.  Probing dark energy with the shear-ratio geometric test , 2006, astro-ph/0606416.

[16]  A. Slosar,et al.  Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints , 2006, astro-ph/0604335.

[17]  A. Heavens,et al.  Potential sources of contamination to weak lensing measurements: constraints from N-body simulations , 2006, astro-ph/0604001.

[18]  K. Kuijken Shears from shapelets , 2005, astro-ph/0601011.

[19]  H. Hoekstra,et al.  First Cosmic Shear Results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey , 2005, astro-ph/0511089.

[20]  I. Tereno,et al.  Cosmic shear analysis with CFHTLS deep data , 2005, astro-ph/0511090.

[21]  D. Wittman Spurious Shear from the Atmosphere in Ground-based Weak-lensing Observations , 2005, astro-ph/0509003.

[22]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[23]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[24]  M. Lombardi,et al.  Hubble Space Telescope ACS Weak-Lensing Analysis of the Galaxy Cluster RDCS 1252.9–2927 at z = 1.24 , 2005, astro-ph/0501150.

[25]  H. Rix,et al.  Cosmological weak lensing with the HST GEMS survey , 2004, astro-ph/0411324.

[26]  N. Benı́tez,et al.  Weak-Lensing Analysis of the z ≃ 0.8 Cluster CL 0152–1357 with the Advanced Camera for Surveys , 2004, astro-ph/0409304.

[27]  H. Hoekstra,et al.  Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey , 2004, astro-ph/0406468.

[28]  R. Massey,et al.  An enlarged cosmic shear survey with the William Herschel Telescope , 2004, astro-ph/0404195.

[29]  R. Massey,et al.  Polar Shapelets , 2004, astro-ph/0408445.

[30]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[31]  M. Viel,et al.  Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra , 2004, astro-ph/0404600.

[32]  Edinburgh,et al.  Evolution of the dark matter distribution with three-dimensional weak lensing , 2004, astro-ph/0403384.

[33]  J. Rhodes,et al.  Measurement of Cosmic Shear with the Space Telescope Imaging Spectrograph , 2003, astro-ph/0312283.

[34]  G. M. Bernstein,et al.  Dark Energy Constraints from Weak-Lensing Cross-Correlation Cosmography , 2003, astro-ph/0309332.

[35]  Saul Perlmutter,et al.  Weak Lensing from Space. II. Dark Matter Mapping , 2003, astro-ph/0304418.

[36]  R. Massey,et al.  Image simulation with shapelets , 2003, astro-ph/0301449.

[37]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[38]  G. Bernstein,et al.  Weak-Lensing Results from the 75 Square Degree Cerro Tololo Inter-American Observatory Survey , 2003 .

[39]  R. Nichol,et al.  Measuring σ8 with Cluster Lensing: Biases from Unrelaxed Clusters , 2002, astro-ph/0211186.

[40]  Heidelberg,et al.  The shear power spectrum from the COMBO-17 survey , 2002, astro-ph/0210213.

[41]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[42]  Edinburgh,et al.  Joint cosmic shear measurements with the Keck and William Herschel Telescopes , 2002, astro-ph/0203134.

[43]  D. Bacon,et al.  Shapelets — II. A method for weak lensing measurements , 2001, astro-ph/0105179.

[44]  Lars Hernquist,et al.  Galaxy Clustering and Galaxy Bias in a ΛCDM Universe , 2002, astro-ph/0212356.

[45]  G. Bernstein,et al.  Weak Lensing Results from the 75 Square Degree CTIO Survey , 2002, astro-ph/0210604.

[46]  S. Okamura,et al.  Cosmic Shear Statistics in the Suprime-Cam 2.1 Square Degree Field: Constraints on Ωm and σ8 , 2002, astro-ph/0210450.

[47]  M. White,et al.  Weak Lensing as a Calibrator of the Cluster Mass-Temperature Relation , 2002, astro-ph/0206292.

[48]  Yannick Mellier,et al.  Weak Lensing Study of Galaxy Biasing , 2002, astro-ph/0206103.

[49]  Y. Mellier,et al.  B-modes in cosmic shear from source redshift clustering , 2001, astro-ph/0112441.

[50]  R. Nichol,et al.  Constraining the Matter Power Spectrum Normalization Using the Sloan Digital Sky Survey/ROSAT All-Sky Survey and REFLEX Cluster Surveys , 2001, astro-ph/0111394.

[51]  F. Courbin,et al.  Gravitational lensing : an astrophysical tool , 2002 .

[52]  Y. Mellier,et al.  Gravity and Nongravity Modes in the VIRMOS-DESCART Weak-Lensing Survey , 2001, astro-ph/0109182.

[53]  G. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001, astro-ph/0107431.

[54]  M. White,et al.  Power-spectrum normalization from the local abundance of rich clusters of galaxies , 2001 .

[55]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[56]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[57]  Ue-Li Pen,et al.  Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing Measurements , 2000, astro-ph/0009052.

[58]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000, astro-ph/0003008.

[59]  G. Bernstein,et al.  Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales , 2000, Nature.

[60]  J. Rhodes,et al.  Weak Lensing Measurements: A Revisited Method and Application toHubble Space Telescope Images , 1999, astro-ph/9905090.

[61]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[62]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[63]  Dark Matter and Gravitational Lensing , 1998, astro-ph/9802005.

[64]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[65]  I. Smail,et al.  Gravitational lensing of distant field galaxies by rich clusters - I. Faint galaxy redshift distributions. , 1994, astro-ph/9402048.

[66]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .