Settling the Complexity of Two-Player Nash Equilibrium

Even though many people thought the problem of finding Nash equilibria is hard in general, and it has been proven so for games among three or more players recently, it's not clear whether the two-player case can be shown in the same class of PPAD-complete problems. We prove that the problem of finding a Nash equilibrium in a two-player game is PPAD-complete

[1]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[2]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1911 .

[3]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[4]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[5]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[6]  N. Vorob’ev Equilibrium Points in Bimatrix Games , 1958 .

[7]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[8]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[9]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[10]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[11]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[12]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[13]  Christos H. Papadimitriou,et al.  Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[14]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[15]  C. Papadimitriou On Inefficient Proofs of Existence and Complexity Classes , 1992 .

[16]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[17]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[18]  Michael L. Littman,et al.  Graphical Models for Game Theory , 2001, UAI.

[19]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.

[20]  Xi Chen,et al.  3-NASH is PPAD-Complete , 2005, Electron. Colloquium Comput. Complex..

[21]  Xi Chen,et al.  On algorithms for discrete and approximate brouwer fixed points , 2005, STOC '05.

[22]  Christos H. Papadimitriou,et al.  Three-Player Games Are Hard , 2005, Electron. Colloquium Comput. Complex..

[23]  Shang-Hua Teng,et al.  On the Approximation and Smoothed Complexity of Leontief Market Equilibria , 2006, FAW.

[24]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[25]  Paul W. Goldberg,et al.  Reducibility among equilibrium problems , 2006, STOC '06.

[26]  Rahul Savani,et al.  Hard‐to‐Solve Bimatrix Games , 2006 .

[27]  Xi Chen,et al.  Computing Nash Equilibria: Approximation and Smoothed Complexity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).