Settling the Complexity of Two-Player Nash Equilibrium
暂无分享,去创建一个
[1] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[2] L. Brouwer. Über Abbildung von Mannigfaltigkeiten , 1911 .
[3] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[4] J. Neumann,et al. Theory of games and economic behavior , 1945, 100 Years of Math Milestones.
[5] E. Rowland. Theory of Games and Economic Behavior , 1946, Nature.
[6] N. Vorob’ev. Equilibrium Points in Bimatrix Games , 1958 .
[7] C. E. Lemke,et al. Equilibrium Points of Bimatrix Games , 1964 .
[8] G. Dantzig,et al. COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .
[9] Andrew Chi-Chih Yao,et al. Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[10] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[11] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[12] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[13] Christos H. Papadimitriou,et al. Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[14] Christos H. Papadimitriou,et al. On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..
[15] C. Papadimitriou. On Inefficient Proofs of Existence and Complexity Classes , 1992 .
[16] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[17] H. Kuk. On equilibrium points in bimatrix games , 1996 .
[18] Michael L. Littman,et al. Graphical Models for Game Theory , 2001, UAI.
[19] Christos H. Papadimitriou,et al. Algorithms, Games, and the Internet , 2001, ICALP.
[20] Xi Chen,et al. 3-NASH is PPAD-Complete , 2005, Electron. Colloquium Comput. Complex..
[21] Xi Chen,et al. On algorithms for discrete and approximate brouwer fixed points , 2005, STOC '05.
[22] Christos H. Papadimitriou,et al. Three-Player Games Are Hard , 2005, Electron. Colloquium Comput. Complex..
[23] Shang-Hua Teng,et al. On the Approximation and Smoothed Complexity of Leontief Market Equilibria , 2006, FAW.
[24] Paul W. Goldberg,et al. The complexity of computing a Nash equilibrium , 2006, STOC '06.
[25] Paul W. Goldberg,et al. Reducibility among equilibrium problems , 2006, STOC '06.
[26] Rahul Savani,et al. Hard‐to‐Solve Bimatrix Games , 2006 .
[27] Xi Chen,et al. Computing Nash Equilibria: Approximation and Smoothed Complexity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).