Parallel mesh adaptation for high-order finite element methods with curved element geometry

This paper presents a parallel adaptive mesh control procedure designed to operate with high-order finite element analysis packages to enable large-scale automated simulations on massively parallel computers. The curved mesh adaptation procedure uses curved entity mesh modification operations that explicitly consider the influence of the curved mesh entities on element shape. Applications of the curved mesh adaptation procedure have been developed to support the parallel automated adaptive accelerator simulations at SLAC National Accelerator Laboratory.

[1]  L Ge Adaptive Mesh Refinement for High Accuracy Wall Loss Determination in Accelerating Cavity Design , 2004 .

[2]  V. Akcelik,et al.  State of the Art in EM Field Computation , 2006 .

[3]  Mark S. Shephard,et al.  Efficient distributed mesh data structure for parallel automated adaptive analysis , 2006, Engineering with Computers.

[4]  Mark S. Shephard,et al.  An Object-Oriented Framework for Reliable Numerical Simulations , 1999, Engineering with Computers.

[5]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Paul-Louis George,et al.  Construction of tetrahedral meshes of degree two , 2012 .

[8]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[9]  Mark S. Shephard,et al.  Accounting for curved domains in mesh adaptation , 2003 .

[10]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[11]  Thomas W. Sederberg,et al.  COMPUTER AIDED GEOMETRIC DESIGN , 2012 .

[12]  Mark S. Shephard,et al.  Mesh modification procedures for general 3d non-manifold domains , 2003 .

[13]  Mark S. Shephard,et al.  Moving curved mesh adaptation for higher-order finite element simulations , 2010, Engineering with Computers.

[14]  Sailkat Dey,et al.  Curvilinear Mesh Generation in 3D , 1999, IMR.

[15]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[17]  Patrick Knupp,et al.  Remarks on Mesh Quality. , 2007 .

[18]  Peter Oswald,et al.  Error estimates and adaptivity , 1994 .

[19]  Patrick M. Knupp,et al.  Introducing the target-matrix paradigm for mesh optimization via node-movement , 2012, Engineering with Computers.

[20]  Robert M. O'Bara,et al.  Towards curvilinear meshing in 3D: the case of quadratic simplices , 2001, Comput. Aided Des..

[21]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[22]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[23]  Christophe Geuzaine,et al.  Geometrical validity of curvilinear finite elements , 2011, J. Comput. Phys..

[24]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[25]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[26]  Leif Kobbelt,et al.  Convergence of subdivision and degree elevation , 1994, Adv. Comput. Math..

[27]  Frédéric Alauzet,et al.  Parallel anisotropic 3D mesh adaptation by mesh modification , 2006, Engineering with Computers.

[28]  Patrick M. Knupp,et al.  Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number , 1999, IMR.

[29]  Misbah Mubarak,et al.  A parallel ghosting algorithm for the flexible distributed mesh database , 2013, Sci. Program..

[30]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[31]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[32]  P. Knupp Algebraic mesh quality metrics for unstructured initial meshes , 2003 .

[33]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[34]  Ron Goldman,et al.  On the smooth convergence of subdivision and degree elevation for Bézier curves , 2001, Comput. Aided Geom. Des..

[35]  Lie-Quan Lee,et al.  Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities , 2009 .

[36]  Robert M. O'Bara,et al.  Construction of near optimal meshes for 3D curved domains with thin sections and singularities for p-version method , 2010, Engineering with Computers.