Parallel mesh adaptation for high-order finite element methods with curved element geometry
暂无分享,去创建一个
Mark S. Shephard | Mark W. Beall | Qiukai Lu | Saurabh Tendulkar | M. Shephard | M. Beall | Saurabh Tendulkar | Qiukai Lu
[1] L Ge. Adaptive Mesh Refinement for High Accuracy Wall Loss Determination in Accelerating Cavity Design , 2004 .
[2] V. Akcelik,et al. State of the Art in EM Field Computation , 2006 .
[3] Mark S. Shephard,et al. Efficient distributed mesh data structure for parallel automated adaptive analysis , 2006, Engineering with Computers.
[4] Mark S. Shephard,et al. An Object-Oriented Framework for Reliable Numerical Simulations , 1999, Engineering with Computers.
[5] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[6] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[7] Paul-Louis George,et al. Construction of tetrahedral meshes of degree two , 2012 .
[8] Fujio Yamaguchi,et al. Computer-Aided Geometric Design , 2002, Springer Japan.
[9] Mark S. Shephard,et al. Accounting for curved domains in mesh adaptation , 2003 .
[10] Mark S. Shephard,et al. Parallel refinement and coarsening of tetrahedral meshes , 1999 .
[11] Thomas W. Sederberg,et al. COMPUTER AIDED GEOMETRIC DESIGN , 2012 .
[12] Mark S. Shephard,et al. Mesh modification procedures for general 3d non-manifold domains , 2003 .
[13] Mark S. Shephard,et al. Moving curved mesh adaptation for higher-order finite element simulations , 2010, Engineering with Computers.
[14] Sailkat Dey,et al. Curvilinear Mesh Generation in 3D , 1999, IMR.
[15] Mark S. Shephard,et al. 3D anisotropic mesh adaptation by mesh modification , 2005 .
[16] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[17] Patrick Knupp,et al. Remarks on Mesh Quality. , 2007 .
[18] Peter Oswald,et al. Error estimates and adaptivity , 1994 .
[19] Patrick M. Knupp,et al. Introducing the target-matrix paradigm for mesh optimization via node-movement , 2012, Engineering with Computers.
[20] Robert M. O'Bara,et al. Towards curvilinear meshing in 3D: the case of quadratic simplices , 2001, Comput. Aided Des..
[21] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[22] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[23] Christophe Geuzaine,et al. Geometrical validity of curvilinear finite elements , 2011, J. Comput. Phys..
[24] Guillermo Rein,et al. 44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .
[25] A. U.S.,et al. Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .
[26] Leif Kobbelt,et al. Convergence of subdivision and degree elevation , 1994, Adv. Comput. Math..
[27] Frédéric Alauzet,et al. Parallel anisotropic 3D mesh adaptation by mesh modification , 2006, Engineering with Computers.
[28] Patrick M. Knupp,et al. Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number , 1999, IMR.
[29] Misbah Mubarak,et al. A parallel ghosting algorithm for the flexible distributed mesh database , 2013, Sci. Program..
[30] I. Babuska,et al. Finite Element Analysis , 2021 .
[31] J. Shewchuk. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .
[32] P. Knupp. Algebraic mesh quality metrics for unstructured initial meshes , 2003 .
[33] B. Joe,et al. Relationship between tetrahedron shape measures , 1994 .
[34] Ron Goldman,et al. On the smooth convergence of subdivision and degree elevation for Bézier curves , 2001, Comput. Aided Geom. Des..
[35] Lie-Quan Lee,et al. Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities , 2009 .
[36] Robert M. O'Bara,et al. Construction of near optimal meshes for 3D curved domains with thin sections and singularities for p-version method , 2010, Engineering with Computers.