Lumped Parameter Modeling for Thermal Characterization of High-Power Modules

Power electronic modules are realized by integrating several semiconductor chips inside one package. In this paper, a new thermal modeling procedure and its application to a power electronic module are presented. The adopted modeling strategy consists of the derivation of numerical thermal impedances by 3-D finite element models, validated by comparison with available experimental data, and of the coefficients identification of the RC passive network, through a specific topology, here introduced, to obtain a lumped parameter model of the thermal behavior of the module.

[1]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[2]  Y. Çengel Heat Transfer: A Practical Approach , 1997 .

[3]  T. Ueta,et al.  A Fast Loss and Temperature Simulation Method for Power Converters, Part II: 3-D Thermal Model of Power Module , 2012, IEEE Transactions on Power Electronics.

[4]  T. Ueta,et al.  A Fast Loss and Temperature Simulation Method for Power Converters, Part I: Electrothermal Modeling and Validation , 2012, IEEE Transactions on Power Electronics.

[5]  Dushan Boroyevich,et al.  High-density system integration for medium power applications , 2010, 2010 6th International Conference on Integrated Power Electronics Systems.

[6]  Noel Y. A. Shammas,et al.  A simple method for evaluating the transient thermal response of semiconductor devices , 2002, Microelectron. Reliab..

[7]  Z. Khatir,et al.  Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions , 2003, Microelectron. J..

[8]  P. Maffezzoni,et al.  Compact thermal networks for modeling packages , 2004, IEEE Transactions on Components and Packaging Technologies.

[9]  Wai-Kai Chen,et al.  The circuits and filters handbook , 2009 .

[10]  Z. Khatir,et al.  Real-time computation of thermal constraints in multichip power electronic devices , 2004, IEEE Transactions on Components and Packaging Technologies.

[11]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[12]  John W. Sofia Fundamentals of Thermal Resistance Measurement , 1998 .

[13]  Pu Zhen He,et al.  Investigation of the Temperature Character of IGBT Failure Mode Based the 3-D Thermal-Electro Coupling FEM , 2013 .

[14]  Computationally Efficient Integration of Complex Thernal Multi-Chip Power Module Models into Circuit Simulators , 2007, 2007 Power Conversion Conference - Nagoya.

[15]  Paolo Maffezzoni,et al.  An Arnoldi based thermal network reduction method for electro-thermal analysis , 2003 .

[16]  S. Lefebvre,et al.  Thermal analysis of power cycling effects on high power IGBT modules by the boundary element method , 2001, Seventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.01CH37189).

[17]  Wolfgang Fichtner,et al.  Thermal component model for electrothermal analysis of IGBT module systems , 2001 .

[18]  S. Waffler,et al.  Performance trends and limitations of power electronic systems , 2010, 2010 6th International Conference on Integrated Power Electronics Systems.

[19]  Luigi Fortuna,et al.  Optimal and Robust Control : Advanced Topics with MATLAB , 2012 .

[20]  F. N. Masana,et al.  A new approach to the dynamic thermal modelling of semiconductor packages , 2001, Microelectron. Reliab..

[21]  Luigi Fortuna,et al.  An Innovative Method for Thermal Characterization of Automotive Electronic Devices Based on CNNs , 2010, IEEE Transactions on Instrumentation and Measurement.

[22]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..